
Package management
Creating and maintaining project-relative package libraries with renv

Daniela Palleschi

Thu Oct 17, 2024

Table of contents

R Packages 2
R packages . 2
CRAN packages . 3
Developer packages . 4
Dependencies . 4

Package versions and libraries 4
Package versions . 4
Updating packages . 5
Package library . 5
Package versions and reproducibility . 5

The renv package 6
Reproducible Environments for R projects . 6
Limits of renv . 6
renv workflow . 7
Initialise project library . 7

New files . 8
renv.lock . 8
renv/ . 8
.RProfile . 9

Project library 9
Locating our project library . 9
Installing more packages . 10
Installing a new package . 10
Installing developer packages . 11

1

Maintaining your lockfile (renv.lock) 11
Lockfile status . 11

Updating renv.lock file . 11
Updating packages . 12
Restoring lockfile . 12

Additional packages 12
Posit Public Package Manager . 13

Session Info 13

Topics

• R packages and dependencies
• package versions and libraries
• the renv package: creating a project-relative package library
• project package library
• lockfile maintenance

Resources

• to read more on today’s topic, check out:
– Ch. 10 (Basic reprodubility: freezing packages) from Rodrigues (2023)
– the renv website
– or the CRAN documentation and vignettes therein (e.g.,: Introduction to renv)

R Packages

R packages

• most open source software (like R) has a range of libraries available
– created by other users/developers and shared for free

• the benefit of open software (besides being free) is that we don’t have to wait for an
updated version to be released by a company

– and anybody can create an R package to facilitate certain tasks or fix some problem
• this is part of the reason for the success and popularity of R

– someone else has likely created a package for some problem or need you have

2

https://raps-with-r.dev/repro_intro.html
https://rstudio.github.io/renv/index.html
https://cran.r-project.org/web/packages/renv/index.html
https://cran.r-project.org/web/packages/renv/vignettes/renv.html

CRAN packages

• the Comprehensive R Archive Network: R’s central software repository
– currently 20,888 21,497 available!

• an archive of the most recent package versions
• for a package to be included in the CRAN, it must go through a lot of tests and checks

– any updates or changes must again be reviewed before being added to CRAN
• CRAN packages can be installed using install.packages(), as we’ve been doing

pacman package (optional)

• a package management tool
• we’ll use the p_load() function to replace install.packages() and library() in

our worksflow

– takes a list of packages, and checks if each package is installed already
– if yes, the package is loaded (as with library())
– if no, the package is installed (as with install.packages()) and then loaded

(as with library())

• only works with CRAN packages (which is all we have for now anyway), although
pacman has a function for developer packages (which we’ll talk about later)

To get started: install pacman (install.packages("pacman")). Then, you can load in
your packages using pacman::p_load(), or with a long list of library() calls like we’ve
previously done (you see why I prefer p_load()!).

Listing 1 Loading packages with `pacman::p_load()`

pacman::p_load(tidyverse, here, janitor)

Listing 2 Loading packages with `library()`

library(tidyverse)
library(here)
library(janitor)

The additional benefit of p_load() is that, if you don’t actually have one of the packages
installed it will automatically be installed and then loaded. With library() you would
instead get an error message.

3

Developer packages

• often hosted on GitHub or GitLab, where packages are typically developed before being
reviewed and added to the CRAN

– benefit: developers can make whatever changes to their package that they like
without having to pass a review on the CRAN

• since CRAN packages are often developed on GH or GL, pre-release (beta) versions will
often be available on a GH repo

• packages/package versions on GH cannot be installed via install.packages()

– we’ll see later how to do this

Dependencies

• some packages are dependent on specific versions of other packages

– if so, you will be prompted during installation to install these dependencies
– but beware: sometimes this overwrites an existing package version you already have,

which can break code that was written with this older version

• this is especially true because, as our projects are currently set up, we have one global
package version on our computer

– so analyses we ran 3 years ago would’ve used older versions of packages
– when we update these packages for current analyses, this might disrupt the code

from 3 years ago

• we’ll see one (partial) solution for this problem soon

Package versions and libraries

Package versions

• packages can be updated at any time

– if hosted on the CRAN, they newer versions are first reviewed/rigorously tested
– if hosted on GitHub/Lab, nobody needs to check the update before publication

• if you want to check which version of a package you’re using, you can run
packageVersion("package")

4

packageVersion("ggplot2")

[1] '3.5.1'

Updating packages

• to check if a package needs updating, you can:

– go to Tools > Check for package updates, or
– run update.packages()

• each will tell you which packages can be updated to which versions

– and give you the option of updating these packages

Package library

• where do all these installed packages go?

– a folder that contains all the packages, called a library

• to find out where this (global) package library is, run .libPaths()

.libPaths()

• the output should currently produce a single file path, something like:

> .libPaths()
[1] "/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library"

• this is the location of your global/system package library

Package versions and reproducibility

• we’ve seen that package versions and dependencies can easily break our existing code
• this means that older projects that were built using previous package versions won’t be

able to run if we update these packages in our global package library

– also a problem in the future: our current code will depend on the package versions
we’re using today

• we need a project-relative package library that is independent of the global library

– we’ll use the renv package to do this

5

The renv package

Reproducible Environments for R projects

• renv aids in maintaining reproducible environments in R projects (Ushey & Wickham,
2024)

• available on the CRAN

Listing 3 Run in the Console

install.packages("renv")

• main benefit: creates a self-contained, independent library per R Project

– avoids cross-library package contamination

• renv freezes and stores package versions used in a project
• but does not make a project reproducible across R versions and machines

– that’s because older package versions are not always compatible with newer com-
putational environments

Limits of renv

renv…

…can

• keep track of packages and their versions
• create a project-specific library per R version
• automatically load/install these package versions

…cannot

• make a project reproducible across all computational environments
• load/install package versions that are incompatible with current R versions or computa-

tional environments
• guarantee full long-term reproduciblity

6

https://rstudio.github.io/renv/articles/renv.html

renv workflow

• Figure 1 visualises a project workflow with renv
• next we’ll see how we use these functions to set-up and maintain a project-specific package

library

Figure 1: Source: CRAN vignette ‘Introduction to renv’ (all rights reserved)

Initialise project library

• run the following in the Console or in a code chunk but with #| eval: false

– we only want to run this once per R Project
– when working in an actual project, I would just run this in the console
– for learning/documenting how to use renv, I would keep this in a code chunk with

#| eval: false

Listing 4 In the Console or with eval: false

renv::init()

• you should see something like this in the Console:

- Linking packages into the project library ... [137/137] Done!

7

https://cran.r-project.org/web/packages/renv/vignettes/renv.html

- Resolving missing dependencies ...
Installing packages --
The following package(s) will be updated in the lockfile:

CRAN ---
[long list of packages and their versions]

The version of R recorded in the lockfile will be updated:
- R [* -> 4.4.0]

- Lockfile written to "~/Documents/IdSL/Teaching/SoSe24/M.A./r4repro_student/renv.lock".

Restarting R session...

- Project '~/Documents/IdSL/Teaching/SoSe24/M.A./r4repro_student' loaded. [renv 1.0.7]

New files

• renv::init() creates three new files or directories

– renv.lock
– renv/
– .Rprofile

• explore these files/folders and see if you can figure out what they contain

renv.lock

• contains metadata about the packages and their versions that you have installed

– this is enough metadata to re-install these package versions on a new machine

• two main components:

– R: info on R version and list of repositories where packages were installed from
– Packages: a record per package with necessary info for re-installation

renv/

• importantly, contains your project-relative library/

– this is instead of using the local/system library on your computer

8

• provides us with “isolation”: the package versions used in an R Project is independent
of the global library

– in other words, different R Projects can use different package versions
– updating packages globally, or in one project, will not affect other project libraries

.RProfile

• runs whenver you (re-)start your R Project
• at this point, should contain a single line:

source("renv/activate.R")

• if you go to this R script, you’ll send a lot of code

– this essentially loads in your project library

Project library

Locating our project library

• if we re-run .libPaths(), we should see our project library

Listing 5 Run in the Console

.libPaths()

[1] "/Users/danielapalleschi/Documents/ZAS/zas-reproducibility-2024/renv/library/macos/R-4.4/aarch64-apple-darwin20"
[2] "/Users/danielapalleschi/Library/Caches/org.R-project.R/R/renv/sandbox/macos/R-4.4/aarch64-apple-darwin20/f7156815"

• [1] is the local project library path
• [2] is the path to a global package cache that renv maintains so that you don’t repeatedly

download packages to your machine for each project library

– e.g., if we already have ggplot2 installed globally on our machine, whenever we
want to add it to a project library we don’t need to re-install it entirely from the
CRAN (unless we want a different package version)

9

Installing more packages

• which packages are stored in renv.lock?

– only those that are used within your project

• packages not used in your project but installed in your global library aren’t included

– to add these packages, or any other packages you want, you need to (re-)install
them locally within your project

• let’s install a package that you’ll likely have already installed elsewhere: lme4 (Bates et
al., 2015)

as usual
install.packages("lme4")
or with pacman::p_load()
pacman::p_load("lme4")
or with the renv package
renv::install("lme4")

• if you already have a package on your machine (in your global library), renv will just
grab it from the global cache

• if not, it will be downloaded from CRAN

Installing a new package

• let’s also install a package I’m confident you don’t already have on your machine

– beepr, which can play notification sounds (Bååth, 2024)

install.packages("beepr")

• and if we want a specific package version:

renv::install("beepr@1.3")

• to test out beepr:

beepr::beep()

10

Installing developer packages

• not all packages are available on the CRAN

– we can install developer packages from GitHub or GitLab using, e.g., the
install_github() function from either the remotes or devtools package (both
are very common)

remotes::install_github("paul-buerkner/brms")
devtools::install_github("paul-buerkner/brms")

• or we can use renv::install()

most recent version
renv::install("paul-buerkner/brms")

• or a specific previous version (you need the commit ID)

renv::install("paul-buerkner/brms@db6ddde90ba533cb3942bc5a62b03803773b9844")

Maintaining your lockfile (renv.lock)

Lockfile status

• you should make a habit of checking the status of your lockfile

– you can do this by running the following:

renv::status()

• ideally, you’ll usually get the following message:

> renv::status()
No issues found -- the project is in a consistent state.

• but if you’ve installed or updated some packages, you will get a list of any packages that
are out-of-sync or haven’t been stored in the lockfile (as should be our case)

Updating renv.lock file

• to update the lockfile and library, simply run:

11

renv::snapshot()

• you’ll be given a list of changes to be made and asked if you want to proceed

– if not problems are mentioned, then you can go ahead

Updating packages

• to update packages using renv, we can use:

renv::update()
or
renv::update.packages()

• this will not automatically store the updated versions in the lockfile

– to do this, include the argument lock = TRUE

• you can also use these functions to only check by including check = T

Restoring lockfile

renv::restore()

• this will restore the current project’s package versions to be those stored in the lockfile

– but only if the library was built in the same R version
– otherwise, all packages need to be installed, and might not function the same

• useful if you

– want to revert to the stored package versions
– want to run your project on another computer (e.g., a collaborator)

Additional packages

• some other packages that can be useful for package management or reproducibility

• groundhog: version control for CRAN, GitHub, and GitLab packages

– uses groundhog.library() instead of library() to load packages

12

– can take a list of libraries (or an object which contains such a list) and a date as
arguments

– will then install the package versions that were available at the given date

• issues can arise when package versions were built on a previous version of R, and are no
longer supported

– this can cause the installation to fail (just like with renv)

Posit Public Package Manager

• Posit (formerly called RStudio, the parent company of R) has a public package manager:
https://packagemanager.posit.co/client/#/

• you can select a snapshot of the CRAN at a specific date: https://packagemanager.posit.
co/client/#/repos/cran/setup

– Snapshots: do you want to freeze package versions to enhance reproducibility?:
Select Yes, always install packages from the date I choose

– follow the rest of the instructions

Session Info

• whether you’re using renv or not, always end a script with sessionInfo()

sessionInfo()

R version 4.4.1 (2024-06-14)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:

13

https://packagemanager.posit.co/client/#/
https://packagemanager.posit.co/client/#/repos/cran/setup
https://packagemanager.posit.co/client/#/repos/cran/setup

[1] stats graphics grDevices datasets utils methods base

loaded via a namespace (and not attached):
[1] digest_0.6.35 fastmap_1.2.0 xfun_0.45 magrittr_2.0.3
[5] knitr_1.47 htmltools_0.5.8.1 rmarkdown_2.27 cli_3.6.2
[9] renv_1.0.7 compiler_4.4.1 rprojroot_2.0.4 here_1.0.1
[13] rstudioapi_0.16.0 tools_4.4.1 evaluate_0.24.0 Rcpp_1.0.12
[17] yaml_2.3.8 magick_2.8.3 rlang_1.1.4 jsonlite_1.8.8

Your practice R Project

Recall that we created a new R Project. It should now have:

• the dataset in the data/ folder
• some scripts/ (perhaps R scripts from last week, at least one Quarto script from

this week)
• a renv.lock file, .Rprofile, and a renv/ folder

Topics �

• R packages and dependencies �
• package versions and libraries �
• the renv package: creating a project-relative package library �
• project package library �
• lockfile maintenance �

References

Bååth, R. (2024). Beepr: Easily play notification sounds on any platform. https://CRAN.R-
project.org/package=beepr

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models
using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.
i01

Rodrigues, B. (2023). Building reproducible analytical pipelines with R.
Ushey, K., & Wickham, H. (2024). Renv: Project environments. https://CRAN.R-project.

org/package=renv

14

https://CRAN.R-project.org/package=beepr
https://CRAN.R-project.org/package=beepr
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=renv
https://CRAN.R-project.org/package=renv

	R Packages
	R packages
	CRAN packages
	Developer packages
	Dependencies

	Package versions and libraries
	Package versions
	Updating packages
	Package library
	Package versions and reproducibility

	The renv package
	Reproducible Environments for R projects
	Limits of renv
	renv workflow
	Initialise project library
	New files
	renv.lock
	renv/
	.RProfile

	Project library
	Locating our project library
	Installing more packages
	Installing a new package
	Installing developer packages

	Maintaining your lockfile (renv.lock)
	Lockfile status
	Updating renv.lock file

	Updating packages
	Restoring lockfile

	Additional packages
	Posit Public Package Manager

	Session Info

