

 Reproducible analysis reports with eye-tracking reading time data

 Summer Semester 2023

 Daniela Palleschi

 Invalid Date

Course Intro

Welcome to the website for the course “Reproducible analysis reports with eye-tracking reading time data” for the Summer Semester 2023. Some quick info about the course:

	the language of instruction is English

	Block course:

	April 12-14 (10am-4pm)

	June 30th (2-6pm)

	July 1st (10am-4pm)

Most documents are available as slides, html, and PDF on Moodle. Choose whichever you prefer (I suggest html).

Course description

	develop skills and know-how

	create reproducible reports & presentations of eye-tracking reading data

	common measures in eye-tracking reading

	importance of reproducible workflow

	communicate findings

	hands-on exercises in RStudio with the R programming language

	data wrangling (tidyverse)

	data visualisation (ggplot2),

	descriptive and inferential statistics (lme4 and lmerTest)

Course credits

	4 LP

	attendance and participation: 1LP

	In-class exercises and preparation: 1LP

	Assignments: 2 LP

	Reproducible (pilot) analysis report + Pre-registration

	Reproducible analysis report

Reading list

	this course does not have a heavy reading load, but a few readings are strongly recommended:

	Open Science: (kathawalla_easing_2021?)

	Eye-tracking reading: (clifton_eye_2007?); (vasishth_what_2013?);

	A short recommendation for statistics for psycholinguists: (vasishth_statistical_2016?)

	Statistics for Linguistics (textbook): (winter_statistics_2019?) (E-book available via Grimm)

Further readings

	there are lots of useful resources out there, specifically:

	Bodo Winter’s tutorials on linear (mixed) models (winter_linear_2013?; winter_very_2014?)

	the PsyTeachR website is a great resource for hands-on stats and/or data analysis in R from the University of Glasgow School of Psychology and Neuroscience

Session Info

Save your session info at the end of each document. Our results very often depend on the version of R/RStudio/a package we used. This is a great first step towards creating a reproducible workflow!

sessionInfo()

R version 4.3.0 (2023-04-21)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.2.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats graphics grDevices datasets utils methods base

loaded via a namespace (and not attached):
 [1] compiler_4.3.0 fastmap_1.1.1 cli_3.6.1 htmltools_0.5.5
 [5] tools_4.3.0 rstudioapi_0.15.0 yaml_2.3.7 rmarkdown_2.23
 [9] knitr_1.43 jsonlite_1.8.7 xfun_0.39 digest_0.6.33
[13] rlang_1.1.1 renv_0.17.3 evaluate_0.21

References

1 Reproducible Analayses

knitr::opts_chunk$set(eval = T, # change this to 'eval = T' to reproduce the analyses; make sure to comment out
 echo = T, # 'print code chunk?'
 message = F, # 'print messages (e.g., warnings)?'
 error = F,
 warning = F)

1.1 Replication

“There is increasing concern that in modern research, false findings may be the majority or even the vast majority of published research claims”

– (ioannidis_why_2005?)

	replication refers to re-running a previous experiment with as few differences as possible

	aim: determine whether the original results were robust and are replicable

	if yes, great! the original findings are reliable

	if no, hmm, maybe the original findings were false positives? or due to some other factor?

	in recent years, researchers have tried to replicate classic studies in their field

	but in many cases, they did not get the same effects the original study reported (and were famous for)

	this began the replication crisis

1.1.1 An example from language research

	(nieuwland_large-scale_2018?): a direct EEG1 replication (versus conceptual replication)

	a multi-lab replication of (delong_probabilistic_2005?)’s impactful paper

	(delong_probabilistic_2005?): reported N400 effects elicted at unexpected nouns, but also on preceding determiners (English a/an) when it signalled an unexpected word,

	e.g., The day was breezy so the boy went outside to fly…a kite/*an airplane

	taken as evidence of pre-activation of phonological form, graded by cloze probability

	(nieuwland_large-scale_2018?): replicated N400 at noun, but not at adjective

	i.e., failure to replicate a famous finding

1.2 Reproducibility

	reproducibility refers to the ability to reproduce somebody’s analyses with their

	data

	and code

	it is not something we do once, nor is it something that will get us published

	but it’s important for open science and encourages transparency

1.2.1 Replication vs. Reproducibility

	replication of a study

	repeating an experiment

	getting similar results

	reproducibility of analyses

	repeating analyses of the same data

	getting the same results

	e.g., when you submit a paper to a journal, they make ask for your data and code so reviewers can reproduce your analyses

	requires data and code

	if you have interesting findings, other researchers (or future you) may want to replicate your study to see if they can replicate your findings

	(may require) stimuli, set-up and presentation information, participant demographics

1.3 Open Science: Why should I care?

	Science is cumulative

	We should ensure we’re building on reliable, robust findings

	i.e., it’s good scientific practice

	Because the field cares

	replication/reproducibility are beginning to be foregrounded by e.g., journals/job advertisements

	Helps future you

	pre-registration, reproducible analyses, clean and shareable data: all help future you

1.3.1 What can I do?

	there’s a variety of open science practices that we can choose to implement

	some suggestions from (kathawalla_easing_2021?):

Level: Easy

	Journal Club

	Project workflow

	Pre-prints

Level: Medium

	Reproducible code

	Sharing data

	Transparent manuscripts

	Pre-registration

Level: Difficult

	Registered reports

1.3.2 How to do better science

	don’t be afraid of making mistakes

	(most) researchers aren’t statisticians or programmers

	do the best you can, and be transparent

	doing some of the steps is better than doing none

1.3.3 What will we learn here?

Design and Reporting

	Preregistration/Registered Reports

	Transparent writing

Analysis

	Reproducible code

	with open source software (R, RStudio, packages)

	dynamic reports with Quarto/Rmarkdown

	Project workflow

	folder structure

	how to sensibly set up your folders

	contained environments

	using RProjects and the here package

Image source: (kathawalla_easing_2021?) (all rights reserved)

1.4 R is for Reproducibility

	we will be working with R, RStudio, Quarto, and RProjects

	R: a programming language for statistical computing and graphics

	RStudio: an integrated development environment (IDE)

	RStudio Desktop

	RStudio Server

	Quarto (similar to Rmarkdown): dynamic reports

	combining text, code, and printed tables and figures

	RProjects: a workflow tool

	contains all files necessary for a project

	works with relative file paths

1.5 Exercises

1.5.1 RStudio

	Open RStudio

	locate the Environment, Files, and Console panes

	File > New File > R script

	write [your birth-month number]*[the your birth day] and hit Enter

	write print("Hello World!")

	write number <- 3*32; this will create an object/variable ‘number’

	write string <- "Hello World!"; this will create an object/variable ‘string’

	write number

	write string

	add comments describing each step using #

	File > Save As

multiply 5 by 7
5*7

[1] 35

print some text
print("Hello World!")

[1] "Hello World!"

save an object 'number' with 5*7
number <- 5*7

save an object 'string' with text
string <- "Hello World!"

print number
number

[1] 35

print string
string

[1] "Hello World!"

do math with objects
number+number

[1] 70

number*number

[1] 1225

number*2

[1] 70

month <- 5

day <- 7

month*day

[1] 35

1.5.2 Quarto2

	R scripts are a great way to keep track of what you did

	however, the output is not saved, and adding comments with # gets kind of chunky

	enter: dynamic reports!

	dynamic reports are those that combine text, code, and output

	they are a great tool for communicating, collaborating, and documenting

	they are also fantastic for note-taking

	Rmarkdown vs. Quarto

	both can combine text with code, outputting PDFs, Word Documents, html, or slides

	main difference: Quarto has native support of a wider range of programming languages (e.g., Python and Julia)

	Want to know more? Check out Hadley Wickham’s intro (wickham_r_nodate?)

1.5.2.1 YAML

title: "My title"
author: "My name"
format: html

	YAML is a human-readable programming language used to configure documents

	formatting is important: but be sandwiched between --- and ---

	in Quarto the output type must at least be given (with R: pdf, html, revealjs)

1.5.2.2 Headings and text

This is a heading

This is text.

This is a sub-heading

This is more text.

	headings are indicated by #

	the number of #’s indicates the heading level

1.5.2.3 Code snippets

do some math
year <- 1989
dog <- "Lola"

	sandwiched between markdown```{r} and `markdown

	shortcut: Ctrl/Cmd+Alt+I

1.5.2.4 In-line code

I was born on `r month`/`r day`/`r year`. My dog's name is `r dog`.

I was born on 5/7/1989. My dog’s name is Lola.

	code output that was run above text can be called in-line using `r `

1.5.2.5 Altogether

title: "My title"
author: "My name"
format: html

This is a heading

This is text.

This is a sub-heading

This is more text.

Add some code chunks.

```{r}
# do some math
year <- 1989
dog <- "Lola"
```

And use call objects for in-line code: I was born on `r month`/`r day`/`r year`. My dog's name is `r dog`.

1.5.3 Quarto Exercises

	Create a new Quarto document

	File > New File > Quarto Document

	Read the instructions

	Practice running the chunks individually

	render the document

	verify that you can modify the code, re-run it, and see modified output

	Create one new Quarto document for each of the three built-in formats: HTML, PDF and Word.

	Render each of the three documents

	How do the outputs differ?

	How do the inputs differ?3

1.5.4 Quarto cont’d

	Choose a Quarto document:

	give it a title, your name (author), and unclick ‘Use visual markdown editor’

	Render

	YAML:

title: "Eye-tracking during reading"
subtitle: "Lecture 2 notes"
author: "[YOUR NAME HERE]"
lang: en
date: `r Sys.Date()`

	Render

	you can now try writing your class notes in this document (if you’re brave)

	electroencephalography↩︎

	https://r4ds.hadley.nz/quarto.html#workflow↩︎

	You may need to install LaTeX in order to build the PDF output — RStudio will prompt you if this is necessary.↩︎

References

2 Eye-tracking during reading

What can we learn from the measures?

Error: '_et_reading.qmd' does not exist in current working directory ('/Users/danielapalleschi/Documents/Personal/repo-eda').

3 Eye-tracking

	in (psycho)linguistics

	during reading

	visual world paradigm

	in psychology

	pupillometry

	visual search

	but also

	market research

	diagnostic tool

3.1 Eye movements

	saccades: eye movements (e.g., from one word to another)

	average saccade legnth: 7-9 letters (in alphabetic writing systems)

	fixations: ‘looking at’ something, e.g., a word (little movement)

	when information is taken in

	average duration: 225-250ms (ranging 50-600ms)

	regressions: saccades to earlier text

	occurance: 10-15% of saccades in skilled readers

(rayner_eye_2009-1?)

3.2 The eye-tracker

	eye-tracker

	camera ++ infrared illuminator

	screen

	chin/head rest

	in our lab: desk-mounted

Image source: SR Research (all rights reserved)

4 Eye-tracking during reading

4.1 Eye-tracking reading measures

	inform theories of language processing via linking hypotheses

	linking visual attention to processing

	typically, we compare reading times as a function of some manipulation

	e.g., Sally went/goed to the store.

	longer reading times are taken to reflect processing costs, associated with e.g., sentence complexity or anomalies

4.2 Region of interest (ROI)

	can be anything on-screen

	sentence-level

	word/region-level

	a certain part of the screen

Video

4.3 Measures (dependent variables)

	what we measure = dependent variables (usually…)

	their value depends on some predictor (e.g., word frequency)

	measures of duration (time spent on a region)

	first fixation

	first-pass reading time

	regression path duration

	total reading time

	data type: continuous

	measures of revisits

	number of fixations

	number of regressions in/out

	regression in/out (yes or no)

	probability of regressions in/out (0:1)

	data type: binary (0,1) or count

4.4 Independent variables

	what can influence reading measures? (juhasz_lexical_2011?; rayner_linguistic_2011?; warren_influence_2011?; clifton_syntactic_2011?)

	some examples:

	Word properties

	word frequency

	word length

	Sentence-level influences

	context (i.e., prediction)

	semantic or grammatical manipulations

	Inter- and intra-individual

	domain-specific expertise

	reading skill level

4.5 What do these measures tell us?

	eye-tracking during reading can tell use when and where processing costs are incurred

	early measures involve “first contact with a word” or region: first-fixation, first-pass reading time (vasishth_what_2013?)

	late measures involve regressions to a region: e.g., total reading time

	may also include ‘spillover’ effects from early processing

	eye-tracking during reading measures can therefore tell us about stages of processing

References

5 Working with eye-tracking reading data in R

Loading and eye-balling a dataset

Set-up

knitr::opts_chunk$set(eval = T, # evaluate = T for REPRODUCIBLE analyses
 echo = T, # 'print code chunk?'
 message = F, # print messages?
 error = T, # render even if errors encountered?
 warning = F) # print warnings?

library(here) # relative path
library(tidyverse) # tidy/transform
library(beepr) # beeps when code runs or fails
library(rbbt) # zotero plugin

beep code
play sound if error encountered
from: https://sejohnston.com/2015/02/24/make-r-beep-when-r-markdown-finishes-or-when-it-fails/
options(error = function(){ # Beep on error
 beepr::beep(sound = "wilhelm")
 Sys.sleep(2) #
 }
)
and when knitting is complete
.Last <- function() { # Beep on exiting session
 beepr::beep(sound = "ping")
 Sys.sleep(6) # allow to play for 6 seconds
 }

rbbt code
Create references.json file based on the citations in this script:
1. make sure you have 'bibliography: references/references.json' in the YAML
2. create a new folder called 'references'
3. run:
rbbt::bbt_update_bib("_et_dataset.qmd")

Error: '_et_dataset.qmd' does not exist in current working directory ('/Users/danielapalleschi/Documents/Personal/repo-eda').

6 The Perfect Lifetime Effect

	the English Present Perfect (e.g., has done) (e.g., comrie_aspect_1976?)

	must be used in temporal contexts that include the present

	I have been sick since last week

	*I have been sick last year

	The Lifetime Effect

	a referent’s lifetime (dead/alive) constrains verb tense in certain circumstances (e.g., mittwoch_tenses_2008?)

	*Queen Elizabeth II is the British monarch.

	*King Charles III was the British monarch.

	the Perfect Lifetime Effect

	the (English) Present Perfect cannot be used to describe events of a dead person (e.g., mittwoch_english_2008?)

	*Queen Elizabeth II has met many politicians.

	King Charles III has met many politicians.

6.1 Our first dataset

	referent-lifetime context

	dead/alive

	critical sentence

	Present Perfect/Simple Future

	binary naturalness judgement to end trial

	accept/reject

Video

6.2 Design description

	2x2 mixed design

	two 2-level factors (2x2 = 2-level x 2-level)

	factor 1: lifetime (levels: dead, alive)

	factor 2: tense (levels: PP, SF)

	
	alive
	dead

	PP
	Eddie Redmayne…has won
	Gene Kelly…*has won

	SF
	Eddie Redmayne…will win
	Gene Kelly…*will win

	predictors/independent variables

	lifetime

	tense

	measure/dependent variables (verb region)

	first-fixation time (milliseconds)

	first-pass reading time (ms)

	regression path duration (ms)

	total reading time (ms)

6.2.1 Repeated measures design

	observations are repeated e.g., multiple data points per participant, and per item across participants

	essentially, data are not independent

	e.g., each participant will have their own reading speed, some items might be systematically less acceptable for some unforeseen reason, etc.

7 Working with the data

Day 1

	load the data

	inspect data

	eyeball data structure

	print summaries

	plot data distributions

Day 2

	tidy data

	visualise data

	communicate data

Day 3

	analyse data

	confirmatory (a priori)

	exploratory (post-hoc)

	report analyses

7.1 Install packages

install.packages("tidyverse")
install.packages("here")

	install

	only do once

	…or when you working on a new computer

	…or after updating R

	might be a wise idea to create a script just for installing packages

	can save time/energy when updating R

7.2 Load packages

library(tidyverse)
library(here)

	load packages

	needed at the start of each session

7.3 Load dataset

df_lifetime <- readr::read_csv(here::here("data/data_lifetime_pilot.csv"))

	N.B., readr::read_csv can be read as “read_csv() function in the readr package”

	i.e., package::function()

	you only need to use this syntax if you haven’t loaded the specific package yet (maybe because you only need it once), or if a function name is included in multiple packages (i.e., there’s a discrepancy in what read_csv could be referring to)

	why did I use it here?

7.4

here package

Using the here package, we can access files relative to where our .RProj is stored.

In ‘olden times’, we had to specify the file path with something like:

load in data from an *absolute* file path
df_lifetime <- read_csv("Users/yournamehere/Documents/SoSe2023/ET_reading/data/data_lifetime_pilot.csv")

Or, we’d set an absolute path as our working directory, to which all other file paths were relative

set *absolute* path as working directory
setwd("Users/username/Documents/SoSe2023/ET_reading")

load in data *relative* to our wd
df_lifetime <- read_csv("data/data_lifetime_pilot.csv")

This meant that if I sent my project folder to somebody else, they wouldn’t be able to run my code because they would have to change the absolute file path to match their machine.

7.5 Inspect dataset

	there are several different things you can inspect

	and different ways to accomplish those things

	the first thing I usually do is look at the column/variable names

7.5.1 names()

	the names in all caps are variables created during the experiment

	i.e., they are our recorded data, mainly what we wanted to measure: dependent variables (DV)

	also includes some information about the experiment set-up per participant

	the other names are variables from my stimuli lists

	i.e., they mostly contain our independent variables (IV)/stimuli

	we typically want to see what effect our IVs had on any given DVs

	variable descriptions can be found on the Moodle: Data > Documentation

names(df_lifetime)

 [1] "RECORDING_SESSION_LABEL" "TRIAL_INDEX"
 [3] "EYE_USED" "IA_DWELL_TIME"
 [5] "IA_FIRST_FIXATION_DURATION" "IA_FIRST_RUN_DWELL_TIME"
 [7] "IA_FIXATION_COUNT" "IA_ID"
 [9] "IA_LABEL" "IA_REGRESSION_IN"
[11] "IA_REGRESSION_IN_COUNT" "IA_REGRESSION_OUT"
[13] "IA_REGRESSION_OUT_COUNT" "IA_REGRESSION_PATH_DURATION"
[15] "KeyPress" "rt"
[17] "bio" "critical"
[19] "gender" "item_id"
[21] "list" "match"
[23] "condition" "name"
[25] "name_vital_status" "tense"
[27] "type" "yes_press"

7.5.2 rename()

	the dependent variable names are pretty clunky, let’s rename a few:

	RECORDING_SESSION_LABEL corresponds to a single participant

	TRIAL_INDEX logged the trial number

	EYE_USED logged which eye was tracked

Code
df_lifetime <- df_lifetime %>%
 rename("px" = RECORDING_SESSION_LABEL,
 "trial" = TRIAL_INDEX,
 "eye" = EYE_USED)

7.5.2.1 Naming variables

Naming conventions

It’s wise to keep variable and object names concise but informative

	all lowercase means fewer key strokes overall

	separate words with either periods or underscores, e.g., trial.index or trial_index

	e.g., we called our dataset df_lifetime because it is a dataframe (df) with data from our lifetime experiment

7.5.3 Data structure

	datasets typically contain a lot of rows and columns

	so we want to get a feel for how the data is structured

	

 ch015.xhtml

Session Info

Show Session Info
sessionInfo()

R version 4.3.0 (2023-04-21)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.2.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats graphics grDevices datasets utils methods base

other attached packages:
 [1] rbbt_0.0.0.9000 beepr_1.3 lubridate_1.9.2 forcats_1.0.0
 [5] stringr_1.5.0 dplyr_1.1.2 purrr_1.0.1 readr_2.1.4
 [9] tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.2 tidyverse_2.0.0
[13] here_1.0.1

loaded via a namespace (and not attached):
 [1] bit_4.0.5 gtable_0.3.3 jsonlite_1.8.7 crayon_1.5.2
 [5] compiler_4.3.0 renv_0.17.3 tidyselect_1.2.0 parallel_4.3.0
 [9] scales_1.2.1 yaml_2.3.7 fastmap_1.1.1 R6_2.5.1
[13] generics_0.1.3 knitr_1.43 munsell_0.5.0 rprojroot_2.0.3
[17] pillar_1.9.0 tzdb_0.4.0 rlang_1.1.1 utf8_1.2.3
[21] stringi_1.7.12 xfun_0.39 audio_0.1-10 bit64_4.0.5
[25] timechange_0.2.0 cli_3.6.1 withr_2.5.0 magrittr_2.0.3
[29] digest_0.6.33 grid_4.3.0 vroom_1.6.3 rstudioapi_0.15.0
[33] hms_1.1.3 lifecycle_1.0.3 vctrs_0.6.3 evaluate_0.21
[37] glue_1.6.2 fansi_1.0.4 colorspace_2.1-0 rmarkdown_2.23
[41] tools_4.3.0 pkgconfig_2.0.3 htmltools_0.5.5

 ch016.xhtml

References

 ch017.xhtml

8 Data wrangling

knitr::opts_chunk$set(eval = T, # evaluate chunks
 echo = T, # 'print code chunk?'
 message = F, # 'print messages (e.g., warnings)?'
 error = F, # stop when error encountered
 warning = F) # don't print warnings

Code
Create references.json file based on the citations in this script
make sure you have 'bibliography: references.json' in the YAML
rbbt::bbt_update_bib("wrangling.qmd")

Code
play sound if error encountered
from: https://sejohnston.com/2015/02/24/make-r-beep-when-r-markdown-finishes-or-when-it-fails/
options(error = function(){ # Beep on error
 beepr::beep(sound = "wilhelm")
 Sys.sleep(2) #
 }
)
and when knitting is complete
.Last <- function() { # Beep on exiting session
 beepr::beep(sound = "ping")
 Sys.sleep(6) # allow to play for 6 seconds
 }

 ch018.xhtml

9 ‘wrangle’ defined

/ˈraŋɡl/

noun

a dispute or argument, typically one that is long and complicated. “an insurance wrangle is holding up compensation payments”

verb

	have a long, complicated dispute or argument. “the bureaucrats continue wrangling over the fine print”

	NORTH AMERICAN round up, herd, or take charge of (livestock). “the horses were wrangled early”

9.1 Wrangler

Jeep Wrangler

Wrangler Jeans

Cowboys

 ch019.xhtml

10 Data Wrangling

	data wrangling = tidying + transforming

	an often long, arduous stage of analysis

Tidy

	re-shaping

	e.g., from wide to long data

	outcome:

	each column = a variable

	each row = an observation

Transform

	filtering

	creating new variables based on observations (e.g., reaction times)

	computing summary statistics (e.g., means)

Image source: (wickham_r_nodate?) (all rights reserved)

10.1 Why tidy data?

	helps future you

	and collaborators

	facilitates sharing your data and code (laurinavichyute_share_2022?)

	in short: facilitates reproducibility!

10.2 What does tidy data look like?

Three rules (wickham_r_nodate?):

	Each variable is a column, each column is a variable

	Each observation is a row, each row is an observation

	Each value is a cell, each cell is a single value

Image source: (wickham_r_nodate?) (all rights reserved)

	N.B., how you define a variable or observation is relative to what you want to do

	for now, let’s consider a single trial per participant as an observation

 ch020.xhtml

11 the tidyverse

	a collection of R packages for tidy data

	you need to load a package at the beginning of every session

	today we will mostly use functions from the dplyr package

	if you load the tidyverse you don’t need to also load dplyr

load tidyverse
library(tidyverse)

package versions

	you can check the package version with:

packageVersion("tidyverse")

[1] '2.0.0'

	need to update?

update a single package
install.packages("tidyverse")

	what about your other packages?

which packages need updating?
old.packages()
update all old packages
update.packages()

11.1 the magritrr pipe %>%

	takes the object before it and feeds it into the next command

	the pipe could be read as “and then”

	N.B., there’s a new pipe in town! The R native |> (Ctrl/Cmd+Shift+M)

take data frame and then...
iris %>%
 # print the head
 head()

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Image source: magrittr documentation (all rights reserved)

11.2 load our data

load lifetime data
readr::read_csv(here::here("data/data_lifetime_pilot.csv"))

A tibble: 4,431 × 28
 RECORDING_SESSION_LABEL TRIAL_INDEX EYE_USED IA_DWELL_TIME
 <chr> <dbl> <chr> <dbl>
 1 px3 1 RIGHT 0
 2 px3 2 RIGHT 0
 3 px3 3 RIGHT 0
 4 px3 3 RIGHT 0
 5 px3 3 RIGHT 0
 6 px3 3 RIGHT 0
 7 px3 3 RIGHT 0
 8 px3 3 RIGHT 0
 9 px3 4 RIGHT 0
10 px3 5 RIGHT 0
ℹ 4,421 more rows
ℹ 24 more variables: IA_FIRST_FIXATION_DURATION <dbl>,
IA_FIRST_RUN_DWELL_TIME <dbl>, IA_FIXATION_COUNT <dbl>, IA_ID <dbl>,
IA_LABEL <chr>, IA_REGRESSION_IN <dbl>, IA_REGRESSION_IN_COUNT <dbl>,
IA_REGRESSION_OUT <dbl>, IA_REGRESSION_OUT_COUNT <dbl>,
IA_REGRESSION_PATH_DURATION <dbl>, KeyPress <dbl>, rt <dbl>, bio <chr>,
critical <chr>, gender <chr>, item_id <dbl>, list <dbl>, match <chr>, …

	was anything added to the Environment pane (top right box in RStudio)?

11.3 variable assignment with <-

	object_name <- code_output_to_be_saved_as_object_name

load lifetime data and store it under df_lifetime
df_lifetime <- readr::read_csv(here::here("data/data_lifetime_pilot.csv"),
 # for special characters
 locale = readr::locale(encoding = "latin1")
)

	you should now see the object df_lifetime in the Environment pane

A note on annotation

	annotate as you go: provide useful comments to describe your code (# comment)

	you always have at least one collaborator: future you!

	comments

First we load required libraries.

load libraries
library(tidyverse) # for e.g., wrangling and plotting
library(here) # for file-paths relative to project folder

 ch021.xhtml

12 Tidyverse verbs

	verbs are functions from the tidyverse package

	for data tidying and transforming we’ll mostly use verbs from the dplyr package, which is part of the tidyverse

	check out RLadies Freiburg to see a YouTube video that covers most of these verbs

12.1 rename()

	one of the first things you’ll often want to do is rename some variables

	let’s start by re-naming some of our variables

	e.g., RECORDING_SESSION_LABEL is a long way of saying ‘participant’

rename variables
df_lifetime <- df_lifetime %>% # make df_lifetime from df_lifetime BUT THEN
 rename("px" = RECORDING_SESSION_LABEL, # rename a variable and (comma = 'and')
 "trial" = TRIAL_INDEX) # another variable

12.1.1 Exercise

Change the following names:

	EYE_USED to eye

	IA_DWELL_TIME to tt

	IA_FIRST_FIXATION_DURATION to ff

	IA_FIXATION_COUNT to fix_count

	IA_FIRST_RUN_DWELL_TIME to fp

	IA_ID to region_n

	IA_LABEL to region_text

	IA_REGRESSION_IN to reg_in

	IA_REGRESSION_IN_COUNT to reg_in_count

	IA_REGRESSION_OUT to reg_out

	IA_REGRESSION_OUT_COUNT to reg_out_count

	IA_REGRESSION_PATH_DURATION to rpd

	name_vital_status to lifetime

the names should then look like this:
names(df_lifetime)

 [1] "px" "trial" "eye" "tt"
 [5] "ff" "fp" "fix_count" "region_n"
 [9] "region_text" "reg_in" "reg_in_count" "reg_out"
[13] "reg_out_count" "rpd" "KeyPress" "rt"
[17] "bio" "critical" "gender" "item_id"
[21] "list" "match" "condition" "name"
[25] "lifetime" "tense" "type" "yes_press"

12.2 relocate

	the second step thing you might want to do is reorder your variables so the most important/relevant are near the beginning and ordered logically

	let’s order our continuous reading time variables from ‘earliest’ to ‘latest’ measure

df_lifetime <- df_lifetime %>%
 relocate(ff,fp,rpd,tt, .after="eye") %>%
 relocate(region_n, region_text, .after="trial")

names(df_lifetime[1:10])

 [1] "px" "trial" "region_n" "region_text" "eye"
 [6] "ff" "fp" "rpd" "tt" "fix_count"

12.3 mutate()

Make some change

	new columns

df_lifetime <- df_lifetime %>%
 mutate(new_column = "new")

	change existing column

df_lifetime <- df_lifetime %>%
 mutate(new_column = px,
 trial = trial + 5)

	but let’s undo that…

df_lifetime <- df_lifetime %>%
 mutate(trial = trial - 5)

12.3.1 if_else()

	can be used inside mutate()

	change values based on some logical condition

	can be used to change an existing column, or create a new one

	ifelse(condition, output_if_true, output_if_false)

df_lifetime <- df_lifetime %>%
 mutate(new_column = if_else(name=="Aaliyah","name is Aaliyah","name is not Aaliyah"))

12.3.2 case_when()

	can be used inside mutate()

	change values based on multiple logical conditions

	can be used to change an existing column, or create a new one

	case_when(condition & other_condition | other_condition ~ output, TRUE ~ output_otherwise)

	if you don’t include TRUE ~ output then NAs will created

df_lifetime <- df_lifetime %>%
 mutate(newer_column = case_when(
 name=="Aaliyah" & trial > 104 ~ "Aaliyah 2nd half",
 name=="Beyoncé" & (px == "px01" | px == "px04") ~ "Beyoncé px04 or px06",
 TRUE ~ "otherwise"))

12.3.3 Exercise

	Create a new variable accept that checks whether the button pressed (KeyPress) equals the button that corresponds to an acceptance (yes_press)

	if KeyPress and yes_press are the same, accept should be 1. If not, accept should be 0

	hint: you will need if_else() or case_when()

	Create a new variable accuracy where:

	if match is yes and accept is 1, accuracy is 1

	if match is no and accept is 0, accuracy is 1

	if match is yes and accept is 0, accuracy is 0

	if match is no and accept is 1, accuracy is 0

	the means and summaries should look like this:

mean(df_lifetime$accept)

[1] 0.6068608

summary(as_factor(df_lifetime$accept))

 0 1
1742 2689

mean(df_lifetime$accuracy)

[1] 0.6267208

summary(as_factor(df_lifetime$accuracy))

 0 1
1654 2777

12.3.4 Extra exercise

	Create a new variable region, that has the following values based on region_n

	region_n 1 is region verb-1

	region_n 2 is region verb

	region_n 3 is region verb+1

	region_n 4 is region verb+2

	region_n 5 is region verb+3

	region_n 6 is region verb+4

summary(as_factor(df_lifetime$region))

filler verb-1 verb verb+1 verb+2 verb+3 verb+4
 1024 639 639 639 639 639 212

	Now relocate our new variables so that:

	region is before region_n

	KeyPress is after yes_press

names(df_lifetime)

 [1] "px" "trial" "region" "region_n"
 [5] "region_text" "eye" "ff" "fp"
 [9] "rpd" "tt" "fix_count" "reg_in"
[13] "reg_in_count" "reg_out" "reg_out_count" "rt"
[17] "bio" "critical" "gender" "item_id"
[21] "list" "match" "condition" "name"
[25] "lifetime" "tense" "type" "yes_press"
[29] "KeyPress" "new_column" "newer_column" "accept"
[33] "accuracy"

12.4 group_by() and ungroup()

Group data by certain variable(s)

	then perform some mutation

	then ungroup the data

df_lifetime <- df_lifetime |>
 group_by(px) |>
 mutate(px_accuracy = mean(accuracy)) %>%
 ungroup()

round(
 range(df_lifetime$px_accuracy),
 2)

[1] 0.26 0.90

12.5 select()

	keep only certain column(s)

df_lifetime %>%
 select(px)

A tibble: 4,431 × 1
 px
 <chr>
 1 px3
 2 px3
 3 px3
 4 px3
 5 px3
 6 px3
 7 px3
 8 px3
 9 px3
10 px3
ℹ 4,421 more rows

df_lifetime %>%
 select(px, trial)

A tibble: 4,431 × 2
 px trial
 <chr> <dbl>
 1 px3 1
 2 px3 2
 3 px3 3
 4 px3 3
 5 px3 3
 6 px3 3
 7 px3 3
 8 px3 3
 9 px3 4
10 px3 5
ℹ 4,421 more rows

select()

	or remove certain columns

df_lifetime %>%
 select(-px, -trial)

A tibble: 4,431 × 32
 region region_n region_text eye ff fp rpd tt fix_count reg_in
 <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 filler 1 He owned innu… RIGHT 0 0 0 0 0 0
 2 filler 1 She is a moth… RIGHT 0 0 0 0 0 0
 3 verb-1 1 She RIGHT 0 0 0 0 0 0
 4 verb 2 will perform RIGHT 0 0 0 0 0 0
 5 verb+1 3 in prestigiou… RIGHT 0 0 0 0 0 0
 6 verb+2 4 in the future, RIGHT 0 0 0 0 0 0
 7 verb+3 5 as reported i… RIGHT 0 0 0 0 0 0
 8 verb+4 6 as reported i… RIGHT 0 0 0 0 0 0
 9 filler 1 He interviewe… RIGHT 0 0 0 0 0 0
10 verb-1 1 She RIGHT 0 0 0 0 0 0
ℹ 4,421 more rows
ℹ 22 more variables: reg_in_count <dbl>, reg_out <dbl>, reg_out_count <dbl>,
rt <dbl>, bio <chr>, critical <chr>, gender <chr>, item_id <dbl>,
list <dbl>, match <chr>, condition <chr>, name <chr>, lifetime <chr>,
tense <chr>, type <chr>, yes_press <dbl>, KeyPress <dbl>, new_column <chr>,
newer_column <chr>, accept <dbl>, accuracy <dbl>, px_accuracy <dbl>

Select criteria

You can also use criteria for select:

	select(starts_with("x")) select columns that start with a character string

	select(ends_with("x")) select columns that end with a character string

	select(contains("x")) select columns that contain a character string

	select(num_range("prefix",10:20)) select columns with a prefix followed by a range of values

12.5.1 Exercise

Remove the example variables we created with mutate:

	new_column and newer_column

should look like this after
names(df_lifetime)

 [1] "px" "trial" "region" "region_n"
 [5] "region_text" "eye" "ff" "fp"
 [9] "rpd" "tt" "fix_count" "reg_in"
[13] "reg_in_count" "reg_out" "reg_out_count" "rt"
[17] "bio" "critical" "gender" "item_id"
[21] "list" "match" "condition" "name"
[25] "lifetime" "tense" "type" "yes_press"
[29] "KeyPress" "accept" "accuracy" "px_accuracy"

12.6 filter()

	select certain rows based on certain criteria (==, !=, >, <, |)

	N.B. when testing logical conditions == is needed

df_lifetime %>%
 filter(trial == 1)

A tibble: 8 × 32
 px trial region region_n region_text eye ff fp rpd tt
 <chr> <dbl> <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 px3 1 filler 1 He owned innumerabl… RIGHT 0 0 0 0
2 px5 1 filler 1 She is a mother of … RIGHT 145 1603 1603 1603
3 px6 1 filler 1 He is a father of t… RIGHT 147 1224 1224 1224
4 px2 1 filler 1 She made innumerabl… RIGHT 84 1829 1829 1829
5 px7 1 filler 1 In the '70s, he own… RIGHT 138 2456 2456 2456
6 px1 1 filler 1 Beloved morning sho… RIGHT 160 1708 1708 1708
7 px8 1 filler 1 She was a mother of… RIGHT 220 806 806 806
8 px4 1 filler 1 In the '70s, he own… LEFT 171 3557 3557 3557
ℹ 22 more variables: fix_count <dbl>, reg_in <dbl>, reg_in_count <dbl>,
reg_out <dbl>, reg_out_count <dbl>, rt <dbl>, bio <chr>, critical <chr>,
gender <chr>, item_id <dbl>, list <dbl>, match <chr>, condition <chr>,
name <chr>, lifetime <chr>, tense <chr>, type <chr>, yes_press <dbl>,
KeyPress <dbl>, accept <dbl>, accuracy <dbl>, px_accuracy <dbl>

12.7 filter()

What are these code chunks doing?

df_lifetime %>%
 filter(px_accuracy > .5)

df_lifetime %>%
 filter(px == "px3")

df_lifetime %>%
 filter(px == "px3" | trial == "3")

df_lifetime %>%
 filter(px == "px3" & trial != "3")

Logical operators

	symbols used to describe a logical condition

	== is idential (1 == 1)

	!= is not identical (1 != 2)

	> is greater than (2 > 1)

	< is less than (1 < 2)

	& and also (for multiple conditions)

	| or (for multiple conditions)

12.7.1 Exercise

	Create a new dataframe df_crit that includes only critical trials

	Create a new dataframe df_fill that includes only filler trials

	Tip: trial type is stored in the column type

df_crit |> select(type) |> head()

A tibble: 6 × 1
 type
 <chr>
1 critical
2 critical
3 critical
4 critical
5 critical
6 critical

df_fill |> select(type) |> head()

A tibble: 6 × 1
 type
 <chr>
1 filler
2 filler
3 filler
4 filler
5 filler
6 filler

12.8 distinct()

	like filter(), but for distinct values of a variable

	“select rows with distinct values for some row(s)”

df_crit %>%
 distinct(px)

A tibble: 8 × 1
 px
 <chr>
1 px3
2 px5
3 px6
4 px2
5 px7
6 px1
7 px8
8 px4

df_crit %>%
 distinct(px, name)

A tibble: 639 × 2
 px name
 <chr> <chr>
 1 px3 Edith Piaf
 2 px3 Aaliyah
 3 px3 David Beckham
 4 px3 Jana Novotna
 5 px3 Grace Kelly
 6 px3 Nigella Lawson
 7 px3 Coco Chanel
 8 px3 Ben Kingsley
 9 px3 Jim Carrey
10 px3 Judy Garland
ℹ 629 more rows

df_crit %>%
 distinct(px, name,
 .keep_all=T)

A tibble: 639 × 32
 px trial region region_n region_text eye ff fp rpd tt
 <chr> <dbl> <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
 1 px3 3 verb-1 1 She RIGHT 0 0 0 0
 2 px3 5 verb-1 1 She RIGHT 0 0 0 0
 3 px3 8 verb-1 1 He RIGHT 0 0 0 0
 4 px3 10 verb-1 1 She RIGHT 0 0 0 0
 5 px3 13 verb-1 1 She RIGHT 0 0 0 0
 6 px3 16 verb-1 1 She RIGHT 0 0 0 0
 7 px3 18 verb-1 1 She RIGHT 0 0 0 0
 8 px3 21 verb-1 1 He RIGHT 0 0 0 0
 9 px3 23 verb-1 1 He RIGHT 0 0 0 0
10 px3 26 verb-1 1 She RIGHT 0 0 0 0
ℹ 629 more rows
ℹ 22 more variables: fix_count <dbl>, reg_in <dbl>, reg_in_count <dbl>,
reg_out <dbl>, reg_out_count <dbl>, rt <dbl>, bio <chr>, critical <chr>,
gender <chr>, item_id <dbl>, list <dbl>, match <chr>, condition <chr>,
name <chr>, lifetime <chr>, tense <chr>, type <chr>, yes_press <dbl>,
KeyPress <dbl>, accept <dbl>, accuracy <dbl>, px_accuracy <dbl>

12.9 arrange()

	sort column(s) in ascending or descending order

	this is really just for ease of reading

default: ascending order (A-Z)
df_crit %>%
 distinct(px, trial, name, condition) %>%
 arrange(px, trial)

A tibble: 639 × 4
 px trial name condition
 <chr> <dbl> <chr> <chr>
 1 px1 3 Amy Winehouse deadPP
 2 px1 5 John Wayne deadPP
 3 px1 8 Abraham Lincoln deadPP
 4 px1 10 Helen Mirren livingSF
 5 px1 13 Paul McCartney livingSF
 6 px1 16 Ariana Grande livingPP
 7 px1 18 Kate Middleton livingSF
 8 px1 21 Johan Cruyff deadSF
 9 px1 23 Marilyn Monroe deadPP
10 px1 26 Biggie Smalls deadSF
ℹ 629 more rows

descending order (Z-A)
df_crit %>%
 distinct(px, trial, name, condition) %>%
 arrange(desc(px), trial)

A tibble: 639 × 4
 px trial name condition
 <chr> <dbl> <chr> <chr>
 1 px8 3 Whitney Houston deadPP
 2 px8 5 Elton John livingSF
 3 px8 8 Jackie Chan livingPP
 4 px8 10 Romy Schneider deadPP
 5 px8 13 James Cameron livingSF
 6 px8 16 Ella Fitzgerald deadSF
 7 px8 18 Kathryn Hepburn deadPP
 8 px8 21 Kate Middleton livingPP
 9 px8 23 Janis Joplin deadPP
10 px8 26 Serena Williams livingSF
ℹ 629 more rows

12.10 separate()

	create new columns from a single column

df_crit<- df_crit %>%
 separate(name,
 sep=" ",
 into = c("First","Last"),
 remove = F, # don't remove original column (name)
 extra = "merge") # if extra chunks, combine in 'Last' (von der...)

	opposite: unite()

 ch022.xhtml

13 Reshape data

	this is the major step of data tidying

	make each column a variable

	make each row an observation

	make each cell a data point

	what variable and observation mean will depend on what you want to do, and will change at different steps of your analyses

	you typically want long data

	but our dataset isn’t as long as it could be

13.1 pivot_longer()

	takes wide data and makes it longer

	converts headers of columns into values of a new column

	combines the values of those columns into a new condensed column

	takes a few arguments:

	cols: which columns do we want to combine into a single column?

	names_to: what should we call the new column containing the previous column names?

	values_to: what should we call the new column containing the values from the previous columns?

pivot_longer()

df_lifetime %>%
 select(px,trial,region,ff,fp,rpd,tt,rt,type,accept,condition) %>%
 filter(type=="critical",region=="verb",px!="px3") %>%
 pivot_longer(
 cols = c(ff,fp,rpd,tt,rt), # columns to make long
 names_to = "measure", # new column name for headers
 values_to = "time" # new column name for values
)

A tibble: 2,795 × 8
 px trial region type accept condition measure time
 <chr> <dbl> <chr> <chr> <dbl> <chr> <chr> <dbl>
 1 px5 3 verb critical 1 livingPP ff 175
 2 px5 3 verb critical 1 livingPP fp 175
 3 px5 3 verb critical 1 livingPP rpd 175
 4 px5 3 verb critical 1 livingPP tt 321
 5 px5 3 verb critical 1 livingPP rt 4736
 6 px5 5 verb critical 1 livingPP ff 207
 7 px5 5 verb critical 1 livingPP fp 413
 8 px5 5 verb critical 1 livingPP rpd 413
 9 px5 5 verb critical 1 livingPP tt 413
10 px5 5 verb critical 1 livingPP rt 4622
ℹ 2,785 more rows

Source: PsyTeachR

13.2 pivot_wider()

	takes long data and makes it wider

	takes a few arguments:

	id_cols: identifying columns

	names_from: what should we call the new column containing the previous column names?

	names_prefix:

	values_from: new column values

pivot_wider()

df_lifetime %>%
 select(px,trial,region,ff,fp,rpd,tt,rt,type,accept,condition) %>%
 filter(type=="critical",px!="px3") %>%
 pivot_wider(
 id_cols = c(px,trial), # columns to make long
 names_from = region, # new column name for headers
 names_prefix = "reg_", # new column name for values
 values_from = tt
)

A tibble: 559 × 8
 px trial `reg_verb-1` reg_verb `reg_verb+1` `reg_verb+2` `reg_verb+3`
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 px5 3 190 321 1723 672 575
 2 px5 5 0 413 476 279 2441
 3 px5 8 246 1892 967 450 981
 4 px5 10 0 601 932 243 702
 5 px5 13 0 407 1115 0 0
 6 px5 16 0 1010 1502 337 1426
 7 px5 18 238 389 1415 359 584
 8 px5 21 0 376 584 475 2015
 9 px5 23 231 215 717 184 255
10 px5 26 125 347 400 317 981
ℹ 549 more rows
ℹ 1 more variable: `reg_verb+4` <dbl>

Source: PsyTeachR

 ch023.xhtml

14 Save your tidy data

	once your data is nice and tidy, save it with a new filename

	this way you always have the same starting point for your data exploration/analyses

run this manually!
write.csv(df_lifetime, here::here("data/tidy_data_lifetime_pilot.csv"),row.names=FALSE)

 ch024.xhtml

15 Summary

	we saw that the equation for a straight line boils down to its intercept and slope

	we fit our first linear model with a categorical predictor

	next, we’ll look at a case with more than one predictor: multiple regression

Important terms

	wrangle
	have a long dispute

	data wrangling
	tidying and transforming your data

	tidy data
	data where each column is a variable and each row is an observation

	the tidyverse
	a group of packages for tidy data

	dplyr
	a package within the tidyverse for data wrangling

	pipe operator (%>% or |>)
	operational function, passes the result of one function/argument to the next

	logical operators
	compare values of two arguments: &, |, ==, !=, >, <

Important functions

	read_csv()
	read-in a csv as a tibble (from readr package)

	rename()
	rename variables

	relocate()
	move variables

	mutate()
	change or create new variables

	if_else()
	condition for `mutate()`

	case_when()
	handle multiple conditions for `mutate()`

	group_by()
	group by a certain variable

	select()
	keep (or exclude) certain variables

	filter()
	keep (or exclude) rows based on some criteria

	distinct()
	keep rows with distinct value of given variable(s)

	arrange()
	sort variable(s) in ascending or descending order

	separate()
	split a variable into multiple variables

	pivot_longer()
	make wide data longer

	pivot_wider()
	make long data wider

 ch025.xhtml

16 Session Info

Show code
sessionInfo()

R version 4.3.0 (2023-04-21)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.2.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats graphics grDevices datasets utils methods base

other attached packages:
 [1] lubridate_1.9.2 forcats_1.0.0 stringr_1.5.0 dplyr_1.1.2
 [5] purrr_1.0.1 readr_2.1.4 tidyr_1.3.0 tibble_3.2.1
 [9] ggplot2_3.4.2 tidyverse_2.0.0

loaded via a namespace (and not attached):
 [1] utf8_1.2.3 generics_0.1.3 renv_0.17.3 stringi_1.7.12
 [5] hms_1.1.3 digest_0.6.33 magrittr_2.0.3 evaluate_0.21
 [9] grid_4.3.0 timechange_0.2.0 fastmap_1.1.1 rprojroot_2.0.3
[13] jsonlite_1.8.7 httr_1.4.6 fansi_1.0.4 scales_1.2.1
[17] cli_3.6.1 rlang_1.1.1 crayon_1.5.2 bit64_4.0.5
[21] munsell_0.5.0 withr_2.5.0 yaml_2.3.7 tools_4.3.0
[25] parallel_4.3.0 tzdb_0.4.0 colorspace_2.1-0 here_1.0.1
[29] curl_5.0.1 vctrs_0.6.3 R6_2.5.1 magick_2.7.4
[33] lifecycle_1.0.3 fs_1.6.2 bit_4.0.5 vroom_1.6.3
[37] rbbt_0.0.0.9000 pkgconfig_2.0.3 pillar_1.9.0 gtable_0.3.3
[41] Rcpp_1.0.11 glue_1.6.2 xfun_0.39 tidyselect_1.2.0
[45] rstudioapi_0.15.0 knitr_1.43 htmltools_0.5.5 rmarkdown_2.23
[49] compiler_4.3.0

 ch026.xhtml

References

 ch027.xhtml

17 Data Visualisation with ggplot2

Communicating your data

knitr::opts_chunk$set(eval = T, # evaluate chunks
 echo = T, # 'print code chunk?'
 message = F, # 'print messages (e.g., warnings)?'
 error = F, # stop when error encountered
 warning = F) # don't print warnings

Create references.json file based on the citations in this script
make sure you have 'bibliography: references.json' in the YAML
rbbt::bbt_update_bib("data_viz.qmd")

 ch028.xhtml

18 Data communication

18.1 Load packages and data

load tidyverse
library(tidyverse)

load data
df_lifetime <- readr::read_csv(here::here("data/tidy_data_lifetime_pilot.csv"),
 # for special characters
 locale = readr::locale(encoding = "latin1")
) |>
 mutate_if(is.character,as.factor) |> # all character variables as factor
 filter(type == "critical", # only critical trials
 px != "px3") # this participant had lots of 0's for some reason

18.2 Tables

	we can create summaries of our data

Code
compute summary
summary_ff <- df_lifetime |>
 filter(region=="verb") |>
 group_by(condition,lifetime,tense) %>%
 summarise(N = n(),
 mean.ff = mean(ff, na.rm = T),
 sd = sd(ff, na.rm = T)) %>%
 # compute standard error, confidence intervals, and lower/upper ci bounds
 mutate(se = sd / sqrt(N),
 ci = qt(1 - (0.05 / 2), N - 1) * se,
 lower.ci = mean.ff - qt(1 - (0.05 / 2), N - 1) * se,
 upper.ci = mean.ff + qt(1 - (0.05 / 2), N - 1) * se)

	and print the output with the kable() function from the knitr package

	for extra customisation you can also use the kableExtra package (e.g., with the kable_styling() function)

install.packages("knitr") # if not yet installed
knitr::kable(summary_ff, digits=1,
 caption = "Table with summmary statistics for first-fixation duration at the verb region")

Table with summmary statistics for first-fixation duration at the verb region

	condition
	lifetime
	tense
	N
	mean.ff
	sd
	se
	ci
	lower.ci
	upper.ci

	deadPP
	dead
	PP
	140
	198.9
	57.9
	4.9
	9.7
	189.2
	208.6

	deadSF
	dead
	SF
	139
	194.6
	67.9
	5.8
	11.4
	183.2
	205.9

	livingPP
	living
	PP
	140
	194.2
	77.3
	6.5
	12.9
	181.3
	207.1

	livingSF
	living
	SF
	140
	186.0
	57.6
	4.9
	9.6
	176.4
	195.6

18.2.1 Exercise

	install the knitr package (install.packages("knitr"))

	create an object with some summary statistics of the variable rt

	call it summary_rt

	use kable() from knitr to print a table

knitr::kable(summary_rt, digits=1,
 caption = "Summary of reaction times (ms) per condition")

Summary of reaction times (ms) per condition

	lifetime
	tense
	condition
	N
	mean.rt
	sd

	dead
	PP
	deadPP
	140
	3530.5
	2915.8

	dead
	SF
	deadSF
	139
	1747.0
	1153.4

	living
	PP
	livingPP
	140
	2257.7
	1346.3

	living
	SF
	livingSF
	140
	2578.1
	1958.7

 ch029.xhtml

19 Plotting reading times

	reading times are (usually) continuous variables

	as are e.g., reaction times

	they are truncated at 0, meaning they cannot have negative values

	because of this, they tend to have a skewed distribution

 ch030.xhtml

20 Plots with ggplot2

	ggplot2 is part of the tidyverse (like dplyr)

	uses a layered grammar of graphics

	i.e., we build layers

 ch031.xhtml

21 An example: histogram

iris |>
 ggplot(aes(x=Sepal.Length)) +
 geom_histogram() +
 labs(title = "A histogram",
 x = "variable")

21.1 Start layering

df_lifetime |> ggplot(aes(ff)) # aes = 'aesthetic'

21.2 Add labels

df_lifetime |> ggplot(aes(ff)) +
 labs(title = "Histogram of first fixation times",
 x = "First fixation times (ms)")

21.3 Add

df_lifetime |> ggplot(aes(ff)) +
 labs(title = "Histogram of first fixataion times",
 x = "First fixation times (ms)") +
 geom_histogram()

Distribution of first fixation times at the verb region (raw milliseconds)

21.4 Add condition

df_lifetime |> ggplot(aes(ff, fill = condition)) +
 labs(title = "First fixataion times at the verb region",
 x = "First fixation times (ms)") +
 geom_histogram()

Distribution of first fixation times at the verb region (raw milliseconds)

The colour here is STACKED!! i.e., not layered. Notice the distribution doesn’t change from all grey to coloured

21.5 Customisation

	we can add arguments to our geoms

	e.g., transparency: alpha = takes a value between 0 to 1

	we can use theme() to customise font sizes, legend placement, etc.

	tehre are also popular preset themes, such as theme_bw() and theme_minimal()

	

 ch032.xhtml

22 Distributions

	show the distribution of observations

	so we can see where the data are clustered

	and eyeball the shape of the distribution

	we already saw the histogram, which shows the number of observations per variable value

	density plots are another useful plot for visualising distributions

iris |>
 ggplot(aes(x=Sepal.Length)) +
 geom_density() +
 labs(title = "A density plot",
 x = "variable")

22.1 Density plots

	below I just replaced geom_histogram() with geom_density()

	I also filtered the data to include only values of ff above 0

	what is plotted along the y-axis? how does this differ from a histogram?

df_lifetime |>
 filter(ff > 0) |>
 ggplot(aes(ff)) +
 labs(title = "Histogram of first fixataion times",
 x = "First fixation times (ms)") +
 geom_density() +
 theme_minimal()

Distribution of first fixation times at the verb region (raw milliseconds).

22.2 Grouped density plots

	just like with histograms, we can look at the density plots of different subsets of the data with aes(fill =)

	like region

df_lifetime |>
 filter(ff > 0) |>
 ggplot(aes(ff, fill = region)) +
 labs(title = "Histogram of first fixataion times",
 x = "First fixation times (ms)") +
 geom_density(alpha=.5) +
 theme_minimal()

Distribution of first fixation times at the verb region (raw milliseconds).

22.2.1 facet_grid()

	there are a lot of overlapping density curves, let’s try to separate them with facet_grid(x~y)

df_lifetime |>
 filter(ff > 0) |>
 ggplot(aes(ff, fill = region)) +
 facet_grid(.~region) +
 labs(title = "Density plot of first fixataion times by region",
 x = "First fixation times (ms)") +
 geom_density(alpha=.5) +
 theme_bw()

Distribution of first fixation times at the verb region (raw milliseconds).

	how would you describe the density plots of the different regions?

22.2.2 re-ordering factors

	by default, factors will be ordered alphabetically

	but we don’t always want that

	here, verb-1 should be before verb

df_lifetime <- df_lifetime %>%
 mutate(region = factor(region,
 levels = c("verb-1","verb","verb+1","verb+2","verb+3","verb+4")))

summary(df_lifetime$region)

verb-1 verb verb+1 verb+2 verb+3 verb+4
 559 559 559 559 559 182

22.2.2.1 Exercise

	create a density plot with the fill colour set to condition, but:

	subset the data to only include the verb region

	you can decide if you want to use facets or to have the density curves overlayed

	your plot should look something like A or B:

22.2.2.2 Extra exercise

	Can you produce these plots?

22.3 Scatterplots

	histograms and density plots plot a single variable along the x-axis

	in most other plots the dependent (measure) variable is plotted along the y-axis by convention

	scatterplots plot the relationship between two variables

iris |>
 ggplot(aes(x=Sepal.Length, y=Sepal.Width)) +
 geom_point() +
 labs(title = "A scatterplot",
 x = "variable X",
 y = "variable Y")

22.3.1 Scatterplots

	the figure below plots total reading times (verb region) to the verb region (x-axis) and reaction times to the critical sentence (y-axis)

	what does each point represent?

	how would you describe the relationship between the two variables?

df_lifetime |>
 filter(ff > 0,
 region == "verb") |>
 ggplot(aes(x = tt, y = rt)) +
 labs(title = "Scatter plot of total reading times (verb region)
and reaction times (critical sentence)",
 x = "Total reading time (ms)",
 y = "Reaction time (ms)") +
 geom_point(alpha = .2) +
 theme_bw()

22.3.1.1 Exercise

	Generate a scatterplot of total reading times and reaction times, with:

	colour and shape set to condition

	tip: these both belong in aes()

	What information does this plot suggest?

 ch033.xhtml

23 Summary statistics

	measures of location: mean, median, mode

	measures of spread: (interquartile) range, standard deviation

23.1 Boxplots

	boxplots provide information about the distribution of a continuous variable

	but includes information like median (dark line) and quartiles (box and whiskers)

	and outliers (dots)

	like scatterplots, require x and y variables

	but one of them needs to be categorical

iris |>
 ggplot(aes(x = Species, y = Sepal.Length)) +
 labs(title = "A scatterplot",
 x = "Categorical variable",
 y = "Continuous variable") +
 geom_boxplot()

A scatterplot. Median (50th percentile): thick black lines; interquartile range (IQR; 25th and 75th percentile): box limits; minimum (0th percentile) and maximum (100th percentile) excluding outliers: : whiskers; outliers: points

23.2 Boxplot explained

Image source: (winter_statistics_2019?) (all rights reserved)

23.3 Boxplots

	let’s change our scatterplot to a boxplot

df_lifetime |>
 filter(ff > 0,
 region == "verb") |>
 ggplot(aes(x = tense, y = ff)) +
 labs(title = "First-fixation duration (verb region)",
 x = "Tense",
 y = "First-fixation duration (ms)") +
 geom_boxplot(alpha = .2) +
 theme_bw()

23.3.1 Grouped boxplots

df_lifetime |>
 filter(ff > 0,
 region == "verb") |>
 ggplot(aes(x = tense, y = ff, colour = lifetime)) +
 labs(title = "First-fixation duration (verb region)",
 x = "Tense",
 y = "First-fixation duration (ms)") +
 geom_boxplot(alpha = .2) +
 theme_bw()

23.3.1.1 Exercise

	Create a group boxplot (x = tense, fill = lifetime) for

	first-pass reading time (verb region)

	regression path duration (verb region)

	total reading time (verb region)

	reaction times (use the distinct() verb to have a single observation per participant and per trial)

23.4 Violin plots

23.5 Violin boxplots

 ch034.xhtml

24 Summary statistics

24.1 Interaction plots

	common for factorial designs, i.e., comparing categorical predictors

	there are 2 ways of producing them:

	with your data frame and stat_summary()

	or with a summary table and ggplot geoms geom_point(), geom_errorbar(), and geom_line()

	we’ll need our summary table to plot an interaction plot

	condition
	lifetime
	tense
	N
	mean.ff
	sd
	se
	ci
	lower.ci
	upper.ci

	deadPP
	dead
	PP
	140
	198.9
	57.9
	4.9
	9.7
	189.2
	208.6

	deadSF
	dead
	SF
	139
	194.6
	67.9
	5.8
	11.4
	183.2
	205.9

	livingPP
	living
	PP
	140
	194.2
	77.3
	6.5
	12.9
	181.3
	207.1

	livingSF
	living
	SF
	140
	186.0
	57.6
	4.9
	9.6
	176.4
	195.6

 ch035.xhtml

25 Binomial data

	binomial data are those with 2 categories, for example

	present, absent

	yes, no

	in our dataset, each trial ended with a binary naturalness judgement task

	how might we plot such data?

25.1 Bar plot

	be sure to read in accept as a factor!

df_lifetime |>
 distinct(px,trial,.keep_all=T) |>
 ggplot(aes(x = as.factor(accept))) +
 geom_bar() +
 theme_bw()

df_lifetime |>
 distinct(px,trial,.keep_all=T) |>
 ggplot(aes(x = as.factor(accept), fill = condition)) +
 labs(title = "Binary responses",
 x = "Naturalness response",
 fill = "Condition") +
 geom_bar() +
 theme_bw()

25.2 Grouped bar plots

df_lifetime |>
 distinct(px,trial,.keep_all=T) |>
 ggplot(aes(x = as.factor(accept), fill = condition)) +
 labs(title = "Binary responses",
 x = "Naturalness response",
 fill = "Condition") +
 geom_bar(position = "dodge") +
 theme_bw()

25.2.1 Exercise

	Generate a grouped bar plot (i.e., dodge) with:

	a facet grid for tense

	plots lifetime on the x-axis

	and fills the bars based on accept

	change the labels accordingly

	customise as you like

df_lifetime |>
 distinct(px,trial,.keep_all=T) |>
 ggplot(aes(x = lifetime, fill = as.factor(accept))) +
 facet_grid(.~tense) +
 labs(title = "Binary responses",
 x = "Lifetime",
 fill = "Response") +
 geom_bar(position = "dodge") +
 theme_bw()

25.3 Grouped bar plots

df_lifetime |>
 distinct(px,trial,.keep_all=T) |>
 ggplot(aes(x = lifetime, fill = as.factor(accept))) +
 facet_grid(.~tense) +
 labs(title = "Grouped and faceted barplot",
 x = "Lifetime",
 fill = "Response") +
 geom_bar(position = "dodge") +
 theme_bw()

25.4 Stacked bar plots

df_lifetime |>
 distinct(px,trial,.keep_all=T) |>
 ggplot(aes(x = lifetime, fill = as.factor(accept))) +
 facet_grid(.~tense) +
 labs(title = "Stacked and faceted barplot",
 x = "Lifetime",
 fill = "Response") +
 geom_bar(position = "stack") +
 theme_bw()

25.4.1 Exercise

	Choose the barplot you like best for binary data

	Reproduce that barplot, but with reg_in at the verb1 region

25.4.2 Extra exercise

	Create another bar plot, but for reg_out for all sentence regions

	Use facet_grid()

	to have facets by region (columns) and by tense (in 2 rows)

 ch036.xhtml

26 Resources

(nordmann_data_2022?)

(nordmann_applied_2022?)

(wickham_r_nodate?), Chapter 2

 ch037.xhtml

References

EPUB/media/file4.png
T T T T
0009 000z 0

EPUB/media/file8.jpg
LORRORE o4

3)
) weeceqe
M2

» .

ceeeee

EPUB/media/file27.png
variable Y

45-

40-

30-

20-

A scatterplot

variable X

EPUB/media/file18.png
count

600~

400~

200~

o

First fixataion times at the verb region

200 460 600
First fixation times (ms)

st

condition

W seaerr
W seaisr
I e
1] wiase

EPUB/media/file26.png
A Density plot of first fixataion tim B

00100
00075

H

Foomo
0.0025

0.0000

tense

100 200 300 400
First fxation times (ms)

c

density

0009
0006
0003
0000

Density plot of first fixataion tim

0.0075
ifotime
PP g 0.0050 l doad
sE % s ting
0.0000
100200300400

Fist fxaion times (ms)

Density plot of first fixataion times (verb region)

PP

SF.

100 200 300 400

100 200 300 400

First fixation times (ms)

lfetime.

dead
tiving

EPUB/media/file35.png
count

300

200

100

as.factor(accept)

EPUB/media/file7.jpg

EPUB/media/file2.mpg4

EPUB/media/file28.png
Reaction time (ms)

15000

10000

5000

Scatter plot of total reading times (verb region)
and reaction times (critical sentence)

5 2000 4000
Total reading time (ms)

6000

EPUB/media/file10.png
/V

Import — Tidy — Transform

Understand

Visualize

Program

EPUB/media/file5.png
2000 3000 4000

1000

0

0009 000z 0

WL TIIMA NNY LSHI™ VIgawnay jp

Index

EPUB/media/file19.png
count

600

200

Histogram of first fixataion times

L

200 430 00
First fixation times (ms)

condition

[e
[senise
1 e
| g

EPUB/media/file6.png
0009 000z 0

WL TIIMA NNY LSHI™ VIgawnay jp

df_lifetime$IA_FIRST_FIXATION_DURATION

EPUB/media/file36.png
count

Binary responses

3001

2001

1004

[
Naturalness response

i

Condition

W seaerr
W seaisr
1 e

livingSF

EPUB/nav.xhtml

Table of contents

		Course Intro		Course description

		Course credits

		Reading list		Further readings

		1 Reproducible Analayses		1.1 Replication		1.1.1 An example from language research

		1.2 Reproducibility		1.2.1 Replication vs. Reproducibility

		1.3 Open Science: Why should I care?		1.3.1 What can I do?

		1.3.2 How to do better science

		1.3.3 What will we learn here?

		1.4 R is for Reproducibility

		1.5 Exercises		1.5.1 RStudio

				1.5.2 Quarto

		1.5.3 Quarto Exercises

		1.5.4 Quarto cont’d

		References

		2 Eye-tracking during reading

		3 Eye-tracking		3.1 Eye movements

		3.2 The eye-tracker

		4 Eye-tracking during reading		4.1 Eye-tracking reading measures

		4.2 Region of interest (ROI)

		4.3 Measures (dependent variables)

		4.4 Independent variables

		4.5 What do these measures tell us?

		5 Working with eye-tracking reading data in R

		6 The Perfect Lifetime Effect		6.1 Our first dataset

		6.2 Design description		6.2.1 Repeated measures design

		7 Working with the data		7.1 Install packages

		7.2 Load packages

		7.3 Load dataset

		7.5 Inspect dataset		7.5.1 names()

		7.5.2 rename()

		7.5.3 Data structure

		7.5.4 head() function

		7.5.5 tail() function

		7.5.6 names()

		7.5.7 summary()

		7.5.8 Exercise

		7.6 class types

		7.8 Plot the data		7.8.1 Plotting two variables

		7.8.2 Exercise

		8 Data wrangling

		9 ‘wrangle’ defined		9.1 Wrangler

		10 Data Wrangling		10.1 Why tidy data?

		10.2 What does tidy data look like?

		11 the tidyverse		11.1 the magritrr pipe %>%

		11.2 load our data

		11.3 variable assignment with <-

		12 Tidyverse verbs		12.1 rename()		12.1.1 Exercise

		12.2 relocate

		12.3 mutate()		12.3.1 if_else()

		12.3.2 case_when()

		12.3.3 Exercise

		12.3.4 Extra exercise

		12.4 group_by() and ungroup()

		12.5 select()

		select()

		12.6 filter()

		12.7 filter()		

		12.7.1 Exercise

		12.8 distinct()

		12.9 arrange()

		12.10 separate()

		13 Reshape data		13.1 pivot_longer()

		pivot_longer()

		13.2 pivot_wider()

		pivot_wider()

		14 Save your tidy data

		15 Summary		Important terms

		Important functions

		16 Session Info

		17 Data Visualisation with ggplot2

		18 Data communication		18.1 Load packages and data

		18.2 Tables		18.2.1 Exercise

		19 Plotting reading times

		20 Plots with ggplot2

		21 An example: histogram		21.1 Start layering

		21.2 Add labels

		21.3 Add

		21.4 Add condition

		21.5 Customisation

		22 Distributions		22.1 Density plots

		22.2 Grouped density plots		22.2.1 facet_grid()

		22.2.2 re-ordering factors

		22.3 Scatterplots		22.3.1 Scatterplots

		23 Summary statistics		23.1 Boxplots

		23.2 Boxplot explained

		23.3 Boxplots		23.3.1 Grouped boxplots

		23.4 Violin plots

		23.5 Violin boxplots

		24 Summary statistics		24.1 Interaction plots

		25 Binomial data		25.1 Bar plot

		25.2 Grouped bar plots		25.2.1 Exercise

		25.3 Grouped bar plots

		25.4 Stacked bar plots		25.4.1 Exercise

		25.4.2 Extra exercise

		26 Resources

 		
 Title Page

EPUB/media/file11.png
000000

000000 ¢
000000

000000

val

observations

B

variables

|

EPUB/media/file41.png
count

Regressions in (yes/no, verb region)

ert] [vert] fore] erte] [erte] [eroe]
100 |
3
3
50
Regressions out (yes/no)
0
me
100
2

50

0

deldngiciadngielscingiciadngieiingieisng

Lifetime

EPUB/media/file37.png
count

100

50

Binary responses

5
Naturalness response

1

Condition

W seaerr
W seaisr
1 e
1 ias

EPUB/media/file24.png
Density plot of first fixataion times by region

vero | [verot | [verort | [verorz | [verosa | [verora
0008
region
verb
vert-1
20006
2 verb1
5
© verb+2.
verbia
0003
verbid
0000

23636000(23636000(2 34300002 3a000BOCZ3a00360(20a063600
First fixation times (ms)

EPUB/media/file12.png

EPUB/media/file3.png
Histogram of df_lifetime$IA_FIRST_RUN_DWELL_T!

3000

Frequency
2000

1000

0

e e —]
0 2000 4000 6000 8000

df_lifetime$IA_FIRST_RUN_DWELL_TIME

EPUB/media/file9.jpg

EPUB/media/file38.png
count

Grouped and faceted barplot

3

dead

ving

Lifetime

dead

ving

Response
| K
B

EPUB/media/file25.png
A Density plot of first fixataion time B Density plot of first fixe

(verb region)
deadPp | deadsF | [ivingPP | [ivingsF
0000 0.009
% ooos Z 000
a -]
0.003 0.003
0.000
jettshenchet ool
A Rat 100 200 300 400
First fixation times (ms) First fixation times (ms

Goniton [T doser [dencsr [wingpe [i

EPUB/media/file30.png
Emotional valence
Warriner et al. (2013)

3000

2000

vacation

murder

Frequency

1000

1 2 3 4 5 6 7 8 9
bad .
2 Rating scale

- [

Q1 Q2 Q3

Figure 3.4. A histogram of the emotional valence rating data

EPUB/media/file13.png

EPUB/media/file31.png
First-fixation duration (ms)

400

300

200

100

First-fixation duration (verb region)

3
Tense

s

EPUB/media/file39.png
Stacked and faceted barplot
3

SF

100{ |
Response

W
1
504

count

dead living

dead living
Lifetime

EPUB/media/file22.png
0.0075

0.0025

0.0000

Histogram of first fixataion times

200

00
First fixation times (ms)

600

800

EPUB/media/file23.png
Histogram of first fixataion times

0008
region
ver
o0 vert-1
2 verb1
5
© verb+2.
verbia
0.003 verbrd.
0000

20 400 600 800
First fixation times (ms)

EPUB/media/file40.png
100

count

50

Regressions in (yes/no, verb region)

3

SF

dead

Regressions in (yes/no)

| K
B

living dead

Lifetime

ving

EPUB/media/file15.png
200

600

EPUB/media/file32.png
First-fixation duration (ms)

400

300

200

100

First-fixation duration (verb region)

23

Tense

s

lifetime

3 dead
3 wing

EPUB/media/file14.png
count

125+

100+

00-

A histogram

6
variable

EPUB/media/file29.png
Continuous variable

A scatterplot

versicolor
Categorical variable

virginica

EPUB/media/file1.png
Camera IR llluminator Pupil Corneal Reflection

EPUB/media/file16.png
Histogram of first fixation times

o 200 460
First fixation times (ms)

660

800

EPUB/media/file20.png
count

600

200

Histogram of first fixataion times

L

200 400 600
First fixation times (ms)

condition

[e
[senise
1 e
| g

EPUB/media/file33.png
First fix (ms)

195

190

Interaction plot with *stat_summary()*

A

dead
Lifetime

ving

Tense
o PP
A s

EPUB/media/file0.png
* Journal