Reporting regression results

Extracting model estimates and data structure

Daniela Palleschi

2024-07-09

Table of contents

Packages	 	 •	 	 . 3 . 3 . 3 . 4
Data dictionary	 	 	 	 . 3 . 3 . 4
Model prep	 		 	. 3 . 3
Model prep	 		 	. 3 . 3 . 4
	 			. 4
	 			. 4
				_
1 Linear regression				5
1.1 Naming conventions				. 5
1.2 Model summary	 			. 6
1.3 Extracting information	 			. 6
2 Running models reproducibly				7
2.1 Storing our models	 			. 7
2.2 Load in RDS model				
3 Model reporting				8
3.1 broom	 			. 8
3.1.1 Example table				
3.2 Publication-ready tables				
4 Mixed models				10
4.1 lmer()	 			. 10
4.2 Extracting model elements				
4.3 summary()				
4.4 broom.mixed				
4.4.1 tidy()				

	4.5	<pre>lmerTest</pre>	12
		4.5.1 Publication-ready tables	13
		4.5.2 Example	13
	4.6	Save our model	14
5	Citii	ng resources	14
		Citing packages	16
6	How	to report	16
	6.1	Data analysis	16
	6.2	Results	17
	6.3	Example model report	17
	6.4	Output	17
Se	ssion	Info	18

Learning objectives

Today we will...

- run our first linear (mixed) model
- produce model summary tables
- report analyses and cite packages
- report model results reproducibly

Resources

Set-up

Packages

• we'll need the following packages for today

```
pacman::p_load(
  tidyverse,
  lme4,
  broom,
  broom.mixed,
  brms
)
```

Data

• we'll need the dataset we've been working with

Data dictionary

• let's review the data dictionary

```
dict_lifetime <- read_csv(
  here::here("data", "tidy_data_lifetime_pilot_dictionary.csv")
)</pre>
```

Model prep

• we want to only have critical items

```
df_lifetime <-
  df_lifetime |>
  filter(type == "critical") |>
  droplevels()
```

• we want our predictors (lifetime and tense) to be factors

```
df_lifetime$lifetime <- as.factor(df_lifetime$lifetime)
df_lifetime$tense <- as.factor(df_lifetime$tense)</pre>
```

```
• and to have sum contrast coding:
```

```
- PP and living are -0,5
```

- SF and dead are +0,5

contrasts(df_lifetime\$lifetime)

```
\begin{array}{cc} & \text{living} \\ \text{dead} & 0 \\ \text{living} & 1 \\ \end{array}
```

contrasts(df_lifetime\$tense)

```
SF
PP 0
SF 1
```

- we see the default treatment (or 'dummy') contrasts here
- to change them:

```
contrasts(df_lifetime$lifetime) <- c(-0.5, +0.5)
contrasts(df_lifetime$tense) <- c(+0.5, -0.5)
```

contrasts(df_lifetime\$lifetime)

```
[,1] dead -0.5 living 0.5
```

contrasts(df_lifetime\$tense)

```
[,1]
PP 0.5
SF -0.5
```

1 Linear regression

- fitting a straight line to data
- for an introduction see webbook for my course Regression for Linguists, e.g., Ch. 1 Understanding straight lines
- fixed-effects only multiple regression:

```
lm(
  log(fp) ~ tense * lifetime,
  subset = region == "verb" & ff > 0,
  data = df_lifetime
)
Call:
lm(formula = log(fp) ~ tense * lifetime, data = df_lifetime,
    subset = region == "verb" & ff > 0)
Coefficients:
     (Intercept)
                                            lifetime1 tense1:lifetime1
                            tense1
         5.63477
                                                               -0.08320
                           0.03357
                                            -0.10130
```

1.1 Naming conventions

- it's very helpful to save our models to our environment so we can inspect them
 - always try to use a prefix that defines what the object is
 - e.g., fit_ or mod_ for models more generally
 - or lm_ or glm_ to specify the function used to produce the model
 - whatever you choose, be consistent within your project

```
lm_fp <-
lm(
log(fp) ~ tense * lifetime,
subset = region == "verb" & ff > 0,
data = df_lifetime
)
```

1.2 Model summary

• the most straightforward way to inspect your model and the results is with summary()

```
summary(lm_fp)
```

```
Call:
lm(formula = log(fp) ~ tense * lifetime, data = df_lifetime,
    subset = region == "verb" & ff > 0)
Residuals:
    Min
              1Q
                   Median
                                3Q
                                        Max
-1.18141 -0.34282 0.00058 0.26923 1.38822
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                          0.01877 300.193 < 2e-16 ***
(Intercept)
                 5.63477
                            0.03754 0.894 0.37158
tense1
                 0.03357
lifetime1
                 -0.10130
                            0.03754 -2.698 0.00718 **
tense1:lifetime1 -0.08320
                            0.07508 -1.108 0.26828
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4374 on 539 degrees of freedom
Multiple R-squared: 0.01712,
                               Adjusted R-squared: 0.01165
F-statistic: 3.129 on 3 and 539 DF, p-value: 0.02538
```

1.3 Extracting information

- lme4 objects contains lots of information
 - navigate to the model object in your Environment and explore the elements
- for example
 - nobs(model) will tell you how many data points were included in the model
 - formula (model) will give you the model formula

```
nobs(lm_fp)
```

[1] 543

formula(lm_fp)

```
log(fp) ~ tense * lifetime
```

• want to check which contrasts were used in your model?

lm_fp\$contrasts

2 Running models reproducibly

- as your models get more computationally complex, they can take time to fit
 - sometimes you also run several models in the same script, which can take a long time
- with literate programming, we want to be able to produce dynamic reports
 - we don't want to run our models anew every time we re-render our document!
 - this also might result in different results if e.g., we update a package or R version
 - or if we send the script to somebody else with a different set-up
- ideally, we would have our source code (in our .qmd script), output (results printed in e.g., HTML our PDF output), and the actual model all stored and retrievable (.rds files)

2.1 Storing our models

- we can save our models as R Data Serialisation files (RDS, .rds file extension)
 - saveRDS(object, filename) writes an R object as RDS file
 - readRDS(filename) reads it in

- first, you'd want to create a folder where you store your models
 - then save your models once you've run them
 - but MAKE SURE you set eval: false
 - or even better, comment out this code!

```
"" {r}
#| eval: false
saveRDS(lm_fp, here::here("models", "lm_fp"))
```

- ideally you would also set the code chunks that fit the model to echo: false
 - you don't want to re-fit the model every time you render the document
 - what's more, any differences in the re-fit model will not reflect what you're actually reporting elsewhere when using the stored RDS model

2.2 Load in RDS model

• and load them in e.g., when you want to report your models in Rmarkdown

```
lm_fp <- readRDS(here::here("models", "lm_fp"))</pre>
```

3 Model reporting

- when you run your models, you'll want to also print the output
 - this way you avoid needing to re-run your code to see the results
- for lme4 models we can use summary()
 - as well as formula(), nobs()

3.1 broom

- $\bullet\,$ the broom package also contains useful functions for reporting ${\tt lme4}$ models
 - broom::tidy() produces the model estimates for our fixed effects

```
broom::tidy(lm_fp)
```

Table 1: Example model summary table using broom::tidy(), knitr::kable(), and kableExtra::kable_styling()

term	estimate	std.error	statistic	p.value
(Intercept)	5.63	0.02	300.19	< .001
tense1	0.03	0.04	0.89	0.372
lifetime1	-0.10	0.04	-2.70	0.007
tense1:lifetime1	-0.08	0.08	-1.11	0.268

```
# A tibble: 4 x 5
```

```
estimate std.error statistic p.value
 term
                               <dbl>
                                         <dbl>
                                                 <dbl>
 <chr>
                     <dbl>
1 (Intercept)
                    5.63
                              0.0188
                                       300.
                                               0
2 tense1
                    0.0336
                              0.0375
                                        0.894 0.372
3 lifetime1
                                        -2.70 0.00718
                   -0.101
                              0.0375
4 tense1:lifetime1 -0.0832
                              0.0751
                                        -1.11 0.268
```

• it's also helpful to store the output as an object

```
tidy_lm_fp <- broom::tidy(lm_fp)</pre>
```

3.1.1 Example table

3.2 Publication-ready tables

- we've already seen how to produce publication-ready tables
 - TASK: produce a summary of the fixed effects of a model and feed it into our knitr and kableExtra functions to produce a publication-ready table

4 Mixed models

- the assumption of independence is often violated
 - due to multiple observations collected from e.g., the same person or item, language,
 etc.
- this can lead to the inflation of Type I error (the chance of a false positive)
- ullet to account for this nonindependence of data points, we can used mixed models
 - mixed because they contain fixed effects (i.e., our predictors at the population-level)
 as well as random effects (group-level overall means and predictor effects)

4.1 lmer()

4.2 Extracting model elements

• we can use the same functions as for lm() models

```
nobs(lmer_lifetime)
```

[1] 543

```
formula(lmer_lifetime)
```

```
log(fp) ~ tense * lifetime + (1 | px) + (1 | item_id)
```

• we can also check how many levels we had for each grouping factor (i.e., random effect: items and participants)

```
summary(lmer_lifetime)$ngrps["px"]
```

px

7

summary(lmer_lifetime)\$ngrps["item_id"]

```
item_id
80
```

4.3 summary()

```
summary(lmer_lifetime)
```

```
Linear mixed model fit by REML ['lmerMod']
Formula: log(fp) ~ tense * lifetime + (1 | px) + (1 | item_id)
  Data: df_lifetime
 Subset: region == "verb" & fp > 0
REML criterion at convergence: 582.5
Scaled residuals:
     Min
              1Q
                   Median
                                3Q
                                        Max
-2.99792 -0.67159 0.02895 0.67995 2.67790
Random effects:
 Groups Name
                     Variance Std.Dev.
 item_id (Intercept) 0.007012 0.08374
        (Intercept) 0.034124 0.18473
 Residual
                     0.154885 0.39355
Number of obs: 543, groups: item_id, 80; px, 7
Fixed effects:
                Estimate Std. Error t value
(Intercept)
                 5.63161
                           0.07245 77.736
tense1
                 0.03794
                            0.03389 1.120
lifetime1
                            0.03387 -3.044
                -0.10308
tense1:lifetime1 -0.09587
                            0.06778 - 1.414
Correlation of Fixed Effects:
           (Intr) tense1 liftm1
tense1
           -0.001
lifetime1
            0.000 0.013
tens1:lftm1 0.003 0.002 -0.002
```

4.4 broom.mixed

- the broom.mixed package also contains useful functions for reporting lme4 mixed models
 - broom.mixed::tidy() produces the model estimates for fixed and random effects
 - if you only want fixed effects, use the argument effects = "fixed"
 - if you only want random effects, use the argument effects = "ran_pars"

4.4.1 tidy()

```
tidy_lmer_lifetime <- broom.mixed::tidy(lmer_lifetime)</pre>
```

```
tidy_lmer_lifetime
```

```
# A tibble: 7 x 6
 effect
          group
                                     estimate std.error statistic
                    term
  <chr>
           <chr>>
                    <chr>>
                                        <dbl>
                                                  <dbl>
                                                             <dbl>
1 fixed
          <NA>
                                       5.63
                                                 0.0724
                                                             77.7
                    (Intercept)
2 fixed
          <NA>
                    tense1
                                       0.0379
                                                 0.0339
                                                             1.12
3 fixed
          <NA>
                    lifetime1
                                      -0.103
                                                 0.0339
                                                             -3.04
4 fixed
           <NA>
                    tense1:lifetime1 -0.0959
                                                 0.0678
                                                             -1.41
5 ran pars item id sd (Intercept)
                                      0.0837
                                                NA
                                                             NA
                    sd__(Intercept)
6 ran_pars px
                                       0.185
                                                NA
                                                             NA
7 ran_pars Residual sd__Observation
                                                NA
                                       0.394
                                                             NA
```

4.5 lmerTest

- is something missing from our model summary?
 - which effects were statistically significant (p < .05)?
- calculating *p*-values is not trivial for mixed models
 - lme4 doesn't do it for linear models
- we can use the lmerTest package, which also has lme4

```
tidy_lmerTest_lifetime <- broom.mixed::tidy(lmerTest_lifetime)</pre>
```

tidy_lmerTest_lifetime

```
# A tibble: 7 x 8
 effect
           group
                    term
                                    estimate std.error statistic
                                                                       df
                                                                            p.value
           <chr>
                                                                              <dbl>
  <chr>
                    <chr>
                                       <dbl>
                                                  <dbl>
                                                            <dbl>
                                                                   <dbl>
           <NA>
                                                            77.7
1 fixed
                    (Intercept)
                                      5.63
                                                 0.0724
                                                                    6.20
                                                                           1.65e-10
2 fixed
           <NA>
                    tense1
                                      0.0379
                                                 0.0339
                                                             1.12 471.
                                                                           2.63e- 1
3 fixed
           <NA>
                    lifetime1
                                     -0.103
                                                 0.0339
                                                            -3.04 468.
                                                                           2.47e- 3
                    tense1:lifeti~
                                                 0.0678
                                                            -1.41 471.
                                                                           1.58e- 1
4 fixed
           <NA>
                                     -0.0959
5 ran_pars item_id sd__(Intercep~
                                      0.0837
                                                                   NA
                                               NA
                                                            NA
                                                                          NA
6 ran_pars px
                    sd__(Intercep~
                                      0.185
                                                NA
                                                            NA
                                                                   NΑ
                                                                          NΑ
7 ran_pars Residual sd__Observati~
                                                NΑ
                                                            NA
                                                                   NA
                                                                          NA
                                      0.394
```

4.5.1 Publication-ready tables

- we've already seen how to produce publication-ready tables
 - TASK: produce publication-ready tables using knitr and kableExtra for:
 - * a table of the model estimates of the fixed effects of our model
 - * a table of the model estimates of the random effects of our model
 - * a table of the with both the fixed and random effects
- produce one of these tables as LaTeX code (if you haven't already)
 - can you then produce this table in Overleaf?

4.5.2 Example

```
tidy_lmerTest_lifetime |>
  mutate(p.value = case_when(
    p.value < .001 ~ "< .001",
    TRUE ~ as.character(round(p.value,3))
)) |>
  knitr::kable(digits = 2) |>
  kableExtra::kable_styling()
```

Table 2: Example model summary table using broom.mixed::tidy(), knitr::kable(), and kableExtra::kable_styling()

effect	group	term	estimate	std.error	statistic	df	p.value
fixed	NA	(Intercept)	5.63	0.07	77.74	6.20	< .001
fixed	NA	tense1	0.04	0.03	1.12	470.73	0.263
fixed	NA	lifetime1	-0.10	0.03	-3.04	468.30	0.002
fixed	NA	tense1:lifetime1	-0.10	0.07	-1.41	470.76	0.158
ran_pars	$item_id$	sd (Intercept)	0.08	NA	NA	NA	NA
ran_pars	px	sd (Intercept)	0.18	NA	NA	NA	NA
ran_pars	Residual	$sd__Observation$	0.39	NA	NA	NA	NA

4.6 Save our model

• let's store our model locally for future use

```
```{r}
#| eval: false
lmerTest_lifetime <- saveRDS(lmerTest_lifetime, here::here("models", "lmerTest_lifetime"))
```</pre>
```

• another tip: you don't want to re-run and re-save your

5 Citing resources

- you should cite the packages you used to fit your models
 - as well as other package versions used (but SessionInfo() also takes care of this)
- to cite packages in-text, you can first extract the citation: with

```
citation(package = "lme4")
```

To cite lme4 in publications use:

```
Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.
```

A BibTeX entry for LaTeX users is

```
@Article{,
    title = {Fitting Linear Mixed-Effects Models Using {lme4}},
    author = {Douglas Bates and Martin M{\"a}chler and Ben Bolker and Steve Walker},
    journal = {Journal of Statistical Software},
    year = \{2015\},\
    volume = \{67\},
    number = \{1\},
    pages = \{1--48\},
    doi = {10.18637/jss.v067.i01},
  }
  • or as BibTeX citation:
print(citation(package = "lme4"), bibtex=TRUE)
To cite lme4 in publications use:
  Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015).
  Fitting Linear Mixed-Effects Models Using lme4. Journal of
  Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.
A BibTeX entry for LaTeX users is
  @Article{,
    title = {Fitting Linear Mixed-Effects Models Using {lme4}},
    author = {Douglas Bates and Martin M{\"a}chler and Ben Bolker and Steve Walker},
    journal = {Journal of Statistical Software},
    year = \{2015\},\
    volume = \{67\},
    number = \{1\},
    pages = \{1--48\},
    doi = {10.18637/jss.v067.i01},
  }
   • then copy it to your .bib file, add a citation reference key (e.g., bates_fitting_2015),
     and cite it in-text with @bates_fitting_2015, which will be formatted as Bates, Mäch-
     ler, et al. (2015)
       - alternatively, save the package reference in Zotero and access it using rbbt
       - e.g., copy the DOI then find the Zotero button for 'Add Item by Identifier'
```

5.1 Citing packages

• would usually be done in Data Analysis

Linear mixed models were fit using the `lmerTest` package which produces the Satterwaite appr

Linear mixed models were fit using the lmerTest package which produces the Satterwaite approximation for degrees of freedom to calculate p-values (Kuznetsova et al., 2017).

6 How to report

- you would typically have a (sub)section called Data Analysis which includes all the steps taken prior to inspecting your results
 - i.e., how you prepared and analysed your data
 - this should be information stated in a pre-registration but in the past tense
- this would typically be followed by a Results section
 - containing the results from these cleaning/analysis steps

6.1 Data analysis

- should include, e.g.,
 - model summaries in tables and/or in-text
 - any inclusion/exclusion criteria for participants or observations
 - any transformations performed on dependent or independent variables
 - \ast e.g., we log-transformed first-pass reading times, and used sum contrast coding for our two 2-level predictors
 - * we should therefore define which levels were coded as what value (+/-0.5)
- model selection
 - what model did you start with? E.g., maximal model given the data and research questions (à la Barr et al., 2013)
 - how did you handle convergence issues? E.g., parsimonious model selection (à la Bates, Kliegl, et al., 2015)

6.2 Results

- this would be followed by a section called Results, which reports e.g.,
 - the number of participants and trials ex-/included in analyses
 - possibly raw means and 95% confidence intervals
 - model formula
 - information about the number of observations per model
- a structure overview of model results

6.3 Example model report

- in an Rmarkdown script where you write up a paper or thesis, you could include the following hidden code chunk
 - i.e., set {r, echo = FALSE}, which is slightly different than the Quarto #| eval: false chunk option syntax

```
pacman::p_load(lme4, lmerTest, tidyverse)
lmerTest_lifetime <- readRDS(here::here("models", "lmerTest_lifetime"))</pre>
```

```
A linear mixed model was fit to log-transformed first-pass reading times, with `r summary(lmanner) An effect of *lifetime* was found in first-pass reading times at the verb region (Est = `r s
```

6.4 Output

A linear mixed model was fit to log-transformed first-pass reading times, with 7 participants and 80 items. The final model formula was log(fp) ~ tense * lifetime + (1 | px) + (1 | item_id).

An effect of *lifetime* was found in first-pass reading times at the verb region (Est = -0.1, t = -3, p = 0.0025). A significant effect of *tense* was not found found (Est = 0.038, t = 1.1, p = 0.26), nor an interaction of *lifetime* and *tense* (Est = -0.096, t = -1.4, p = 0.16).

Learning objectives

Today we...

- run our first linear (mixed) model
- produce model summary tables
- report analyses and cite packages
- report model results reproducibly

Session Info

```
print(sessionInfo(), locale = F)
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Ventura 13.2.1
Matrix products: default
BLAS:
        /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;
attached base packages:
[1] stats
              graphics grDevices datasets utils
                                                       methods
                                                                  base
other attached packages:
 [1] lmerTest_3.1-3
                          brms_2.21.5
                                              Rcpp_1.0.12
 [4] broom.mixed_0.2.9.5 broom_1.0.6
                                              lme4_1.1-35.3
 [7] Matrix_1.7-0
                          lubridate_1.9.3
                                              forcats_1.0.0
[10] stringr_1.5.1
                          dplyr_1.1.4
                                              purrr_1.0.2
[13] readr_2.1.5
                          tidyr_1.3.1
                                              tibble_3.2.1
                          tidyverse_2.0.0
[16] ggplot2_3.5.1
loaded via a namespace (and not attached):
 [1] tidyselect_1.2.1
                           viridisLite_0.4.2
                                                100_2.7.0
 [4] fastmap_1.2.0
                           tensorA_0.36.2.1
                                                pacman_0.5.1
 [7] digest_0.6.35
                           timechange_0.3.0
                                                estimability_1.5.1
[10] lifecycle_1.0.4
                          magrittr_2.0.3
                                                posterior_1.5.0
[13] compiler_4.4.0
                           rlang_1.1.4
                                                tools_4.4.0
[16] utf8_1.2.4
                           yaml_2.3.8
                                                knitr_1.47
[19] bridgesampling_1.1-2 bit_4.0.5
                                                here_1.0.1
```

[22]	xml2_1.3.6	abind_1.4-5	numDeriv_2016.8-1.1
[25]	withr_3.0.0	grid_4.4.0	fansi_1.0.6
[28]	xtable_1.8-4	colorspace_2.1-0	future_1.33.2
[31]	globals_0.16.3	emmeans_1.10.2	scales_1.3.0
[34]	MASS_7.3-60.2	cli_3.6.2	mvtnorm_1.2-5
[37]	rmarkdown_2.27	crayon_1.5.2	generics_0.1.3
[40]	RcppParallel_5.1.7	rstudioapi_0.16.0	tzdb_0.4.0
[43]	minqa_1.2.7	splines_4.4.0	bayesplot_1.11.1
[46]	parallel_4.4.0	matrixStats_1.3.0	vctrs_0.6.5
[49]	boot_1.3-30	jsonlite_1.8.8	hms_1.1.3
[52]	bit64_4.0.5	listenv_0.9.1	systemfonts_1.1.0
[55]	glue_1.7.0	parallelly_1.37.1	nloptr_2.0.3
[58]	codetools_0.2-20	${\tt distributional_0.4.0}$	stringi_1.8.4
[61]	gtable_0.3.5	munsell_0.5.1	furrr_0.3.1
[64]	pillar_1.9.0	htmltools_0.5.8.1	Brobdingnag_1.2-9
[67]	R6_2.5.1	rprojroot_2.0.4	kableExtra_1.4.0
[70]	vroom_1.6.5	evaluate_0.23	lattice_0.22-6
[73]	backports_1.5.0	renv_1.0.7	rstantools_2.4.0
[76]	svglite_2.1.3	coda_0.19-4.1	nlme_3.1-165
[79]	checkmate_2.3.1	xfun_0.44	pkgconfig_2.0.3

References

- Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. *Journal of Memory and Language*, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
- Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious Mixed Models. arXiv Preprint, 1–27. https://doi.org/10.48550/arXiv.1506.04967
- Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using Lme4. *Journal of Statistical Software*, 67(1). https://doi.org/10.18637/jss.v067.i01
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). **ImerTest** Package: Tests in Linear Mixed Effects Models. *Journal of Statistical Software*, 82(13). https://doi.org/10.18637/jss.v082.i13