
Package management
Creating and maintaining project-relative package libraries with renv

Daniela Palleschi

2024-06-11

Table of contents

Packages 2
CRAN packages . 3
Developer packages . 4
Dependencies . 4

Package versions 4
Updating packages . 5
Package library . 5
Package versions and reproducibility . 5

renv 6
Limits of renv . 6
renv workflow . 6

Initialise project library 7
New files . 8
renv.lock . 8
renv/ . 8
.RProfile . 9
Project library . 9

Installing more packages 9
Installing a new package . 10
Installing developer packages . 10

Lockfile status 11
Updating renv.lock file . 11

1

Updating packages 11

Restoring lockfile 12

Additional packages 12

Session Info 12

Learning objectives

Today we will…

• learn about R package repositories
• learn how package dependencies can break code
• use the renv package to create and maintain a project-relative package library

Resources

• to read more on today’s topic, check out:

• Ch. 10 (Basic reprodubility: freezing packages) from Rodrigues (2023)

• the renv website

– or CRAN documentation and vignettes therein (e.g.,: Introduction to renv)

Packages

• most open source software (like R) has a range of libraries available

– created by other users/developers and shared for free

• the benefit of open software (besides being free) is that we don’t have to wait for an
updated version to be released by a company

– and anybody can create an R package to facilitate certain tasks or fix some problem

• this is part of the reason for the success and popularity of R

– someone else has likely created a package for some problem or need you have

2

https://raps-with-r.dev/repro_intro.html
https://rstudio.github.io/renv/index.html
https://cran.r-project.org/web/packages/renv/index.html
https://cran.r-project.org/web/packages/renv/vignettes/renv.html

CRAN packages

• the Comprehensive R Archive Network: R’s central software repository
– currently 20,888 available!

• an archive of the most recent package versions
• for a package to be included in the CRAN, it must go through a lot of tests and checks

– any updates or changes must again be reviewed before being added to CRAN
• CRAN packages can be installed using install.packages(), as we’ve been doing

pacman package (optional)

• a package management tool
• we’ll use the p_load() function to replace install.packages() and library() in

our worksflow

– takes a list of packages, and checks if each package is installed already
– if yes, the package is loaded (as with library())
– if no, the package is installed (as with install.packages()) and then loaded

(as with library())

• only works with CRAN packages (which is all we have for now anyway), although
pacman has a function for developer packages (which we’ll talk about later)

To get started: install pacman (install.packages("pacman")). Then, you can load in
your packages using pacman::p_load(), or with a long list of library() calls like we’ve
previously done (you see why I prefer p_load()!).

Listing 1 Loading packages with `pacman::p_load()`

pacman::p_load(tidyverse, here, janitor)

Listing 2 Loading packages with `library()`

library(tidyverse)
library(here)
library(janitor)

The additional benefit of p_load() is that, if you don’t actually have one of the packages
installed it will automatically be installed and then loaded. With library() you would
instead get an error message.

3

Developer packages

• often hosted on GitHub or GitLab, where packages are typically developed before being
reviewed and added to the CRAN

– benefit: you can make whatever you changes to your package that you like without
having to pass a review on the CRAN

• since CRAN packages are often developed on GH or GL, pre-release (beta) versions will
often be available on a GH repo

• packages/package versions on GH cannot be installed via install.packages()

– we’ll see later how to do this

Dependencies

• some packages are dependent on specific versions of other packages

– if so, you will be prompted during installation to install these dependencies
– but beware: sometimes this overwrites an existing package version you already have,

which can break code that was written with this older version

• this is especially true because, as our projects are currently set up, we have one global
package version on our computer

– so analyses we ran 3 years ago would’ve used older versions of packages
– when we update these packages for current analyses, this might disrupt the code

from 3 years ago

• we’ll see one (partial) solution for this problem soon

Package versions

• packages can be updated at any time

– if hosted on the CRAN, they newer versions are first reviewed/rigorously tested
– if hosted on GitHub/Lab, nobody needs to check the update before publication

• if you want to check which version of a package you’re using, you can run
packageVersion("package")

packageVersion("ggplot2")

[1] '3.5.1'

4

Updating packages

• to check if a package needs updating, you can:

– go to Tools > Check for package updates, or
– run update.packages()

• each will tell you which packages can be updated to which versions

– and give you the option of updating these packages

Package library

• where do all these installed packages go?

– a folder that contains all the packages, called a library

• to find out where this (global) package library is, run .libPaths()

.libPaths()

• the output should currently produce a single file path, something like:

> .libPaths()
[1] "/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library"

• this is the location of your global package library

Package versions and reproducibility

• we’ve seen that package versions and dependencies can easily break our existing code
• this means that older projects that were built using previous package versions won’t be

able to run if we update these packages in our global package library

– also a problem in the future: our current code will depend on the package versions
we’re using today

• we need a project-relative package library that is independent of the global library

– we’ll use the renv package to do this

5

Listing 3 Run in the Console

install.packages("renv")

renv

• renv aids in maintaining reproducible environments in R projects
• available on the CRAN

• main benefit: creates a self-contained, independent library per R Project

– avoids cross-library package contamination

• renv freezes and stores package versions used in a project
• but does not make a project reproducible across R versions and machines

– that’s because older package versions are not always compatible with newer com-
putational environments

Limits of renv

renv…

…can

• keep track of packages and their versions
• create a project-specific library per R version
• automatically load/install these package versions

…cannot

• make a project reproducible across all computational environments
• load/install package versions that are incompatible with current R versions or computa-

tional environments
• guarantee full long-term reproduciblity

renv workflow

• Figure 1 visualises a project workflow with renv
• next we’ll see how we use these functions to set-up and maintain a project-specific package

library

6

https://rstudio.github.io/renv/articles/renv.html

Figure 1: Source: CRAN vignette ‘Introduction to renv’ (all rights reserved)

Initialise project library

• run the following in the Console or in a code chunk but with #| eval: false

– we only want to run this once per R Project
– when working in an actual project, I would just run this in the console
– for learning/documenting how to use renv, I would keep this in a code chunk with

#| eval: false

Listing 4 In the Console or with eval: false

renv::init()

• you should see something like this in the Console:

- Linking packages into the project library ... [137/137] Done!
- Resolving missing dependencies ...
Installing packages --
The following package(s) will be updated in the lockfile:

CRAN ---
[long list of packages and their versions]

7

https://cran.r-project.org/web/packages/renv/vignettes/renv.html

The version of R recorded in the lockfile will be updated:
- R [* -> 4.4.0]

- Lockfile written to "~/Documents/IdSL/Teaching/SoSe24/M.A./r4repro_student/renv.lock".

Restarting R session...

- Project '~/Documents/IdSL/Teaching/SoSe24/M.A./r4repro_student' loaded. [renv 1.0.7]

New files

• renv::init() creates three new files or directories

– renv.lock
– renv/
– .Rprofile

• explore these files/folders and see if you can figure out what they contain

renv.lock

• contains metadata about the packages and their versions that you have installed

– this is enough metadata to re-install these package versions on a new machine

• two main components:

– R: info on R version and list of repositories where packages were installed from
– Packages: a record per package with necessary info for re-installation

renv/

• importantly, contains your project-relative library/

– this is instead of using the one library on your computer

• provides us with “isolation”: the package versions used in an R Project is independent
of the global library

– in other words, different R Projects can use different package versions
– updating packages globally, or in one project, will not affect other project libraries

8

.RProfile

• runs whenver you (re-)start your R Project
• at this point, should contain a single line:

source("renv/activate.R")

• if you go to this R script, you’ll send a lot of code

– this essentially loads in your project library

Project library

• now if we re-run .libPaths(), we should see our project library

Listing 5 Run in the Console

.libPaths()

> .libPaths()
[1] "/Users/danielapalleschi/Documents/IdSL/Teaching/SoSe24/M.A./r4repro_SoSe2024/renv/library/macos/R-4.4/aarch64-apple-darwin20"
[2] "/Users/danielapalleschi/Library/Caches/org.R-project.R/R/renv/sandbox/macos/R-4.4/aarch64-apple-darwin20/f7156815"

• [1] is the local project library path
• [2] is the path to a global package cache that renv maintains so that you don’t repeatedly

download packages to your machine for each project library

– e.g., if we already have ggplot2 installed globally on our machine, whenever we
want to add it to a project library we don’t need to re-install it entirely from the
CRAN (unless we want a different package version)

Installing more packages

• which packages are stored in renv.lock?

– only those that are used within your project

• packages not used in your project but installed in your global library aren’t included

– to add these packages, or any other packages you want, you need to (re-)install
them locally within your project

9

• let’s install a package that we’ll use later on: lme4

as usual
install.packages("lme4")
or with the renv package
renv::install("lme4")

• if you already have a package on your machine (in your global library), renv will just
grab it from the global cache

• if not, it will be downloaded from CRAN

Installing a new package

• let’s also install a package I’m confident you don’t already have on your machine (as you
might’ve already worked with lme4 in other classes)

– [brms] for Bayesian regression models using Stan

install.packages("brms")
renv::install("brms")

• and if we want a specific package version:

renv::install("brms@2.19.0")

Installing developer packages

• not all packages are available on the CRAN

– we can install developer packages from GitHub or GitLab using, e.g., the
install_github() function from either the remotes or devtools package (both
are very common)

remotes::install_github("paul-buerkner/brms")
devtools::install_github("paul-buerkner/brms")

• or we can use renv::install()

most recent version
renv::install("paul-buerkner/brms")

10

a specific previous version, for which you'll need the commit ID
renv::install("paul-buerkner/brms@db6ddde90ba533cb3942bc5a62b03803773b9844")

Lockfile status

• you should make a habit of checking the status of your lockfile

– you can do this by running the following:

renv::status()

• ideally, you’ll usually get the following message:

> renv::status()
No issues found -- the project is in a consistent state.

• but if you’ve installed or updated some packages, you will get a list of any packages that
are out-of-sync or haven’t been stored in the lockfile (as should be our case)

Updating renv.lock file

• to update the lockfile and library, simply run:

renv::snapshot()

• you’ll be given a list of changes to be made and asked if you want to proceed

– if not problems are mentioned, then you can go ahead

Updating packages

• to update packages using renv, we can use:

renv::update()
or
renv::update.packages()

• this will not automatically store the updated versions in the lockfile

– to do this, include the argument lock = TRUE

• you can also use these functions to only check by including check = T

11

Restoring lockfile

renv::restore()

• this will restore the current project’s package versions to be those stored in the lockfile

– but only if the library was built in the same R version
– otherwise, all packages need to be installed, and might not function the same

• useful if you

– want to revert to the stored package versions
– want to run your project on another computer (e.g., a collaborator)

Additional packages

• some other packages that can be useful for package management or reproducibility

• groundhog: version control for CRAN, GitHub, and GitLab packages

– uses groundhog.library() instead of library() to load packages
– can take a list of libraries (or an object which contains such a list) and a date as

arguments
– will then install the package versions that were available at the given date

• issues can arise when package versions were built on a previous version of R, and are no
longer supported

– this can cause the installation to fail (just like with renv)

Session Info

• whether you’re using renv or not, always end a script with sessionInfo()

– with dynamic reports: this will print out the package versions used to produce the
output

– in R: you can save the info as an object and save it as an RDS file
∗ or run it, copy-and-paste the output in the script, and comment it all out

sessionInfo()

12

R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Ventura 13.2.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats graphics grDevices datasets utils methods base

loaded via a namespace (and not attached):
[1] digest_0.6.35 fastmap_1.2.0 xfun_0.44 magrittr_2.0.3
[5] knitr_1.47 htmltools_0.5.8.1 rmarkdown_2.27 cli_3.6.2
[9] renv_1.0.7 compiler_4.4.0 rprojroot_2.0.4 here_1.0.1
[13] rstudioapi_0.16.0 tools_4.4.0 evaluate_0.23 Rcpp_1.0.12
[17] yaml_2.3.8 magick_2.8.3 rlang_1.1.4 jsonlite_1.8.8

Learning objectives

Today we will…

• learn about R package repositories
• learn how package dependencies can break code
• use the renv package to create and maintain a project-relative package library

References

Rodrigues, B. (2023). Building reproducible analytical pipelines with R.

13

	Packages
	CRAN packages
	Developer packages
	Dependencies

	Package versions
	Updating packages
	Package library
	Package versions and reproducibility

	renv
	Limits of renv
	renv workflow

	Initialise project library
	New files
	renv.lock
	renv/
	.RProfile
	Project library

	Installing more packages
	Installing a new package
	Installing developer packages

	Lockfile status
	Updating renv.lock file

	Updating packages
	Restoring lockfile
	Additional packages
	Session Info

