
Data communication with tables
Data dictionaries and summary tables

Daniela Palleschi

2023-04-13

Table of contents

Learning objectives 2

Load packages and data 2

Data dictionary 2
Variable names . 2

Names to rows . 3
pivot_longer() . 5

Pivot our data dictionary . 6
Save data dictionary . 6

Formatted tables 6
Tables as LaTeX code . 8

Exercise . 8

Data summaries 8

Saving summary tables 9

Additional packages 9
kableExtra::kable_styling() . 10
flextable . 11
papaja::apa_table() . 11

Exercise 11

1

Learning objectives

• create a data dictionary
• produce formatted tables with the knitr package
• produce summary tables

Load packages and data

load tidyverse
pacman::p_load(tidyverse, here)

load data
df_lifetime <- readr::read_csv(here::here("data/tidy_data_lifetime_pilot.csv"),

for special characters
locale = readr::locale(encoding = "latin1")
) |>

mutate_if(is.character,as.factor) |> # all character variables as factor
filter(type == "critical", # only critical trials

px != "px3") # this participant had lots of 0's for some reason

Data dictionary

• we haven’t really discussed what exactly our data are, though
• data dictionaries (a.k.a. code books)

– describe each variable in a dataset
– ideally also provide information regarding possible values

Variable names

• we can list the names of all variables in a dataset using names()

names(df_lifetime)

[1] "px" "trial" "region" "region_n"
[5] "region_text" "eye" "ff" "fp"
[9] "rpd" "tt" "fix_count" "reg_in"

2

[13] "reg_in_count" "reg_out" "reg_out_count" "rt"
[17] "bio" "critical" "gender" "item_id"
[21] "list" "match" "condition" "name"
[25] "lifetime" "tense" "type" "yes_press"
[29] "KeyPress" "accept" "accuracy" "px_accuracy"

• but we need to be able to put these names into a single column

– where each row contains one variable name
– and other columns contain information like description and data class

Names to rows

From day 2 of Lisa DeBruine's [Coding Club: Creating an R Package](https://psyteachr.github.io/intro-r-pkgs/02-data.html#documentation)

create as many empty strings as we name variable names
coldesc <- rep("", ncol(df_lifetime))
add variable names to these empty strings
names(coldesc) <- names(df_lifetime)

print as code needed to create an object
dput(coldesc)

c(px = "", trial = "", region = "", region_n = "", region_text = "",
eye = "", ff = "", fp = "", rpd = "", tt = "", fix_count = "",
reg_in = "", reg_in_count = "", reg_out = "", reg_out_count = "",
rt = "", bio = "", critical = "", gender = "", item_id = "",
list = "", match = "", condition = "", name = "", lifetime = "",
tense = "", type = "", yes_press = "", KeyPress = "", accept = "",
accuracy = "", px_accuracy = "")

• copy the output of dput(coldesc) and assign it to an object

– tip: you can reformat the code by highlighting it and using Cmd/Ctrl+Shift+A
∗ or in the menu bar: Code > Reformat Code

• replace c() with tibble() to create a dataframe

– and fill in the quotations with description of the data

3

dict_lifetime <- tibble(
px = "participant ID (factor)",
trial = "trial number (ordered factor)",
region = "sentence region (order factor)",
region_n = "numerical representation of sentence region (ordered factor)",
region_text = "text presented in the region (string)",
eye = "which eye was tracking: right or left (binomial)",
ff = "first-fixation times in milliseconds (continuous, values can be 0<)",
fp = "first-pass reading times in milliseconds (numeric, values can be 0<)",
rpd = "regression-path duration in milliseconds (numeric, values can be 0<)",
tt = "total reading time in milliseconds (numeric, values can be 0<)",
fix_count = "number of total fixations in the region (count)",
reg_in = "whether of a regression was made into the regions (binomial: 0 = no, 1 = yes)",
reg_in_count = "number of fixations into the region (count)",
reg_out = "whether of a regression was made out of the regions (binomial: 0 = no, 1 = yes)",
reg_out_count = "number of fixations out of the region (count)",
rt = "reaction time from critical sentence presentation to button press (continuous, values can be 0<)",
bio = "lifetime biography context sentence (string)",
critical = "critical sentence (string)",
gender = "gender of stimulus subject (binomial: male, female)",
item_id = "item identification number (critical items: 1-80)",
list = "experimental list version: base list version (1-4) and whether the yes-button was coded as 4 or 5 (factor: 14, 15, 24, 25, 34, 35, 44, 45)",
match = "whether the referent-lifetime was congruent with tense",
condition = "condition: lifetime (dead, alive) + tense (PP, SF) (factor)",
name = "name of stimulis subject (string)",
lifetime = "lifetime status of stimulus subject at time of experiment (binomial: dead, alive)",
tense = "tense used in critical sentence (binomail: PP = present perfect, SF = simple future)",
type = "sentence type (factor with one level: critical)",
yes_press = "corresponding coding for the yes-button on Cedrus response box (4 = left button, 5 = right button)",
KeyPress = "key that was pressed (4 = left button, 5 = right button)",
accept = "whether the item was accepted, i.e., whether KeyPress equalled yes_press",
accuracy = "whether the acceptance was accurate (reject for a mismatch, accept for a match)",
px_accuracy = "participant's overall accuracy score"

)

• but dict_lifetime doesn’t have the shape we want

– each variable name is a column name
– and its description is in the first row

4

dict_lifetime

A tibble: 1 x 32
px trial region region_n region_text eye ff fp rpd tt
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>

1 participant I~ tria~ sente~ numeric~ text prese~ whic~ firs~ firs~ regr~ tota~
i 22 more variables: fix_count <chr>, reg_in <chr>, reg_in_count <chr>,
reg_out <chr>, reg_out_count <chr>, rt <chr>, bio <chr>, critical <chr>,
gender <chr>, item_id <chr>, list <chr>, match <chr>, condition <chr>,
name <chr>, lifetime <chr>, tense <chr>, type <chr>, yes_press <chr>,
KeyPress <chr>, accept <chr>, accuracy <chr>, px_accuracy <chr>

• we want to transpose the data

– i.e., rotates the data so that the column names are in a row, with the descriptions
in another row

pivot_longer()

• takes wide data and makes it longer

– converts headers of columns into values of a new column
– combines the values of those columns into a new condensed column

• takes a few arguments:

– cols: which columns do we want to combine into a single column?
– names_to: what should we call the new column containing the previous column

names?
– values_to: what should we call the new column containing the values from the

previous columns?

5

Pivot our data dictionary

• this looks much better!

dict_lifetime <-
dict_lifetime |>
pivot_longer(

cols = everything(),
names_to = "variable",
values_to = "description"

)

Save data dictionary

• now we can save our data dictionary just like we would any csv

write_csv(dict_lifetime, here("data", "tidy_data_lifetime_pilot_dictionary.csv"))

Formatted tables

• when we render our document, dict_lifetime won’t look very pretty
• there are several packages that produce nicely formatted tables

– knitr

6

dict_lifetime |>
knitr::kable()

variable description
px participant ID (factor)
trial trial number (ordered factor)
region sentence region (order factor)
region_n numerical representation of sentence region (ordered factor)
region_texttext presented in the region (string)
eye which eye was tracking: right or left (binomial)
ff first-fixation times in milliseconds (continuous, values can be 0<)
fp first-pass reading times in milliseconds (numeric, values can be 0<)
rpd regression-path duration in milliseconds (numeric, values can be 0<)
tt total reading time in milliseconds (numeric, values can be 0<)
fix_count number of total fixations in the region (count)
reg_in whether of a regression was made into the regions (binomial: 0 = no, 1 = yes)
reg_in_countnumber of fixations into the region (count)
reg_out whether of a regression was made out of the regions (binomial: 0 = no, 1 = yes)
reg_out_countnumber of fixations out of the region (count)
rt reaction time from critical sentence presentation to button press (continuous,

values can be 0<)
bio lifetime biography context sentence (string)
critical critical sentence (string)
gender gender of stimulus subject (binomial: male, female)
item_id item identification number (critical items: 1-80)
list experimental list version: base list version (1-4) and whether the yes-button was

coded as 4 or 5 (factor: 14, 15, 24, 25, 34, 35, 44, 45)
match whether the referent-lifetime was congruent with tense
condition condition: lifetime (dead, alive) + tense (PP, SF) (factor)
name name of stimulis subject (string)
lifetime lifetime status of stimulus subject at time of experiment (binomial: dead, alive)
tense tense used in critical sentence (binomail: PP = present perfect, SF = simple

future)
type sentence type (factor with one level: critical)
yes_press corresponding coding for the yes-button on Cedrus response box (4 = left button,

5 = right button)
KeyPress key that was pressed (4 = left button, 5 = right button)
accept whether the item was accepted, i.e., whether KeyPress equalled yes_press
accuracy whether the acceptance was accurate (reject for a mismatch, accept for a match)
px_accuracyparticipant’s overall accuracy score

7

Tables as LaTeX code

• you can add the argument "latex" to print LaTeX code for a table in the Console

– you can then cut and paste this code into a LaTeX (or Overleaf) script

dict_lifetime |>
knitr::kable("latex")

• but be careful, if you’re rendering to HTML the table won’t be printed if you use "latex"

Exercise

1. install the knitr package (install.packages("knitr"))
2. print dict_lifetime, but only for the following variables:

• px, trial, region_text, ff, fp, and condition

3. use kable() from knitr to print the table

variable description
px participant ID (factor)
trial trial number (ordered factor)
region_text text presented in the region (string)
ff first-fixation times in milliseconds (continuous, values can be 0<)
fp first-pass reading times in milliseconds (numeric, values can be 0<)
condition condition: lifetime (dead, alive) + tense (PP, SF) (factor)

Data summaries

• we can create summary tables of our data

compute summary
summary_ff <- df_lifetime |>
filter(region=="verb") |>
group_by(condition,lifetime,tense) %>%
summarise(N = n(),

mean.ff = mean(ff, na.rm = T),
sd = sd(ff, na.rm = T)) %>%

compute standard error, confidence intervals, and lower/upper ci bounds
mutate(se = sd / sqrt(N),

8

ci = qt(1 - (0.05 / 2), N - 1) * se,
lower.ci = mean.ff - qt(1 - (0.05 / 2), N - 1) * se,
upper.ci = mean.ff + qt(1 - (0.05 / 2), N - 1) * se)

• and print the output with the kable() function from the knitr package

– for extra customisation you can also use the kableExtra package (e.g., with the
kable_styling() function)

install.packages("knitr") # if not yet installed
knitr::kable(summary_ff, digits=1,

caption = "Table with summmary statistics for first-fixation duration at the verb region")

Table 3: Table with summmary statistics for first-fixation duration at the verb region

condition lifetime tense N mean.ff sd se ci lower.ci upper.ci
deadPP dead PP 140 198.9 57.9 4.9 9.7 189.2 208.6
deadSF dead SF 139 194.6 67.9 5.8 11.4 183.2 205.9
livingPP living PP 140 194.2 77.3 6.5 12.9 181.3 207.1
livingSF living SF 140 186.0 57.6 4.9 9.6 176.4 195.6

Saving summary tables

• we could also save this table using write_csv()

– but it’s relatively simple to re-produce, so I wouldn’t bother
– instead, when writing up my results I would load in the data and print the summary

directly

• sometimes summary tables are more code-intensive

– in this case I would save the summary as a csv, and simply load and print it when
writing in R markdown or Quarto

Additional packages

There are many other packages for including tables that are publication-ready. Some that I
would suggest you look into:

9

• kableExtra which includes additionally formatting options for knitr::kable() tables
via the kable_styling() function and others

– tables must first pass through knitr::kable(), e.g., my_table |> knitr::kable()
|> kableExtra::kable_styling()

• flextable

– very flexible package for creating publication-ready tables of many formats

• papaja::apa_table(): the papaja package aids in creating APA-formatted journal
articles

– the apa_table() function can take objects containing results from a statisical
test/model and output a formatted table

– we’ll discuss this topic more when we get into regression

kableExtra::kable_styling()

• we’ll first create a little summary table using the iris dataset which comes built-in with
R

sum_iris <- iris |>
summarise(mean = mean(Sepal.Length),

sd = sd(Sepal.Length),
n = n(),
.by = Species)

• and we’ll print the summary using kable_styling() (Table 4)

sum_iris |>
knitr::kable() |>
kableExtra::kable_styling()

Table 4: Example output of an table using the kableExtra package

Species mean sd n
setosa 5.006 0.3524897 50
versicolor 5.936 0.5161711 50
virginica 6.588 0.6358796 50

10

https://haozhu233.github.io/kableExtra/
https://cran.r-project.org/web/packages/flextable/index.html

flextable

• print the same summary using flextable() (Table 5)

sum_iris |>
flextable::flextable()

Table 5: Example output of an table using the flextable package

Species mean sd n
setosa 5.006 0.3524897 50
versicolor 5.936 0.5161711 50
virginica 6.588 0.6358796 50

papaja::apa_table()

• now run a linear mixed model on the iris data

lmm_iris <-
lme4::lmer(Sepal.Width ~ Sepal.Length + Petal.Width +

(1|Species), data = iris)

• and print a model summary table using apa_table() (Table 6)

lmm_iris |> papaja::apa_print() |>
papaja::apa_table(caption = NULL)

Exercise

1. create an object with some summary statistics of the variable rt

• call it summary_rt

2. use kable() from knitr to print a table, it should look something like Table 8
3. try creating the same table with one (or more) of the additional packages we saw above

(kableExtra, flextable, papaja)

11

Table 6: Example output of an LMM using papaja package

[tbp]

Table 7

Term ̂𝛽 95% CI 𝑡
Intercept 0.85 [-0.34, 2.05] 1.39
Sepal Length 0.27 [0.18, 0.36] 5.85
Petal Width 0.51 [0.28, 0.74] 4.37

Table 8: Summary of reaction times (ms) per condition

lifetime tense condition N mean.rt sd
dead PP deadPP 140 3530.5 2915.8
dead SF deadSF 139 1747.0 1153.4
living PP livingPP 140 2257.7 1346.3
living SF livingSF 140 2578.1 1958.7

12

	Learning objectives
	Load packages and data
	Data dictionary
	Variable names
	Names to rows

	pivot_longer()
	Pivot our data dictionary

	Save data dictionary

	Formatted tables
	Tables as LaTeX code
	Exercise

	Data summaries
	Saving summary tables
	Additional packages
	kableExtra::kable_styling()
	flextable
	papaja::apa_table()

	Exercise

