Data communication with tables

Data dictionaries and summary tables

Daniela Palleschi

2023-04-13

Table of contents

Learning objectives	2
Load packages and data	2
Data dictionary	2
Variable names	2
Names to rows	3
pivot_longer()	5
Pivot our data dictionary	6
Save data dictionary	6
Formatted tables	6
Tables as LaTeX code	8
Exercise	8
Data summaries	8
Saving summary tables	9
Additional packages	9
kableExtra::kable_styling()	10
flextable	11
<pre>papaja::apa_table()</pre>	11
Exercise	11

Learning objectives

- create a data dictionary
- produce formatted tables with the knitr package
- produce summary tables

Load packages and data

Data dictionary

- we haven't really discussed what exactly our data are, though
- data dictionaries (a.k.a. code books)
 - describe each variable in a dataset
 - ideally also provide information regarding possible values

Variable names

• we can list the names of all variables in a dataset using names()

names(df_lifetime)

[1] "px"	"trial"	"region"	"region_n"
<pre>[5] "region_text"</pre>	"eye"	"ff"	"fp"
[9] "rpd"	"tt"	"fix_count"	"reg_in"

[13]	"reg_in_count"	"reg_out"	"reg_out_count"	"rt"
[17]	"bio"	"critical"	"gender"	"item_id"
[21]	"list"	"match"	"condition"	"name"
[25]	"lifetime"	"tense"	"type"	"yes_press"
[29]	"KeyPress"	"accept"	"accuracy"	"px_accuracy"

- but we need to be able to put these names into a single column
 - where each row contains one variable name
 - and other columns contain information like description and data class

Names to rows

From day 2 of Lisa DeBruine's [Coding Club: Creating an R Package](https://psyteachr.githu

```
# create as many empty strings as we name variable names
coldesc <- rep("", ncol(df_lifetime))
# add variable names to these empty strings
names(coldesc) <- names(df_lifetime)</pre>
```

```
# print as code needed to create an object
dput(coldesc)
```

```
c(px = "", trial = "", region = "", region_n = "", region_text = "",
eye = "", ff = "", fp = "", rpd = "", tt = "", fix_count = "",
reg_in = "", reg_in_count = "", reg_out = "", reg_out_count = "",
rt = "", bio = "", critical = "", gender = "", item_id = "",
list = "", match = "", condition = "", name = "", lifetime = "",
tense = "", type = "", yes_press = "", KeyPress = "", accept = "",
accuracy = "", px_accuracy = "")
```

- copy the output of dput(coldesc) and assign it to an object
 - tip: you can reformat the code by highlighting it and using Cmd/Ctrl+Shift+A
 - $\ast\,$ or in the menu bar: Code > Reformat Code
- replace c() with tibble() to create a dataframe
 - and fill in the quotations with description of the data

```
dict_lifetime <- tibble(</pre>
  px = "participant ID (factor)",
  trial = "trial number (ordered factor)",
  region = "sentence region (order factor)",
  region_n = "numerical representation of sentence region (ordered factor)",
  region_text = "text presented in the region (string)",
  eye = "which eye was tracking: right or left (binomial)",
  ff = "first-fixation times in milliseconds (continuous, values can be 0<)",
  fp = "first-pass reading times in milliseconds (numeric, values can be 0<)",</pre>
  rpd = "regression-path duration in milliseconds (numeric, values can be 0<)",
  tt = "total reading time in milliseconds (numeric, values can be 0<)",</pre>
  fix_count = "number of total fixations in the region (count)",
  reg_in = "whether of a regression was made into the regions (binomial: 0 = no, 1 = yes)",
  reg_in_count = "number of fixations into the region (count)",
  reg_out = "whether of a regression was made out of the regions (binomial: 0 = no, 1 = yes)
  reg_out_count = "number of fixations out of the region (count)",
  rt = "reaction time from critical sentence presentation to button press (continuous, values
  bio = "lifetime biography context sentence (string)",
  critical = "critical sentence (string)",
  gender = "gender of stimulus subject (binomial: male, female)",
  item_id = "item identification number (critical items: 1-80)",
  list = "experimental list version: base list version (1-4) and whether the yes-button was
  match = "whether the referent-lifetime was congruent with tense",
  condition = "condition: lifetime (dead, alive) + tense (PP, SF) (factor)",
  name = "name of stimulis subject (string)",
  lifetime = "lifetime status of stimulus subject at time of experiment (binomial: dead, ali
  tense = "tense used in critical sentence (binomail: PP = present perfect, SF = simple future
  type = "sentence type (factor with one level: critical)",
  yes press = "corresponding coding for the yes-button on Cedrus response box (4 = left button
  KeyPress = "key that was pressed (4 = left button, 5 = right button)",
  accept = "whether the item was accepted, i.e., whether KeyPress equalled yes_press",
  accuracy = "whether the acceptance was accurate (reject for a mismatch, accept for a match
  px_accuracy = "participant's overall accuracy score"
)
```

- but dict_lifetime doesn't have the shape we want
 - each variable name is a column name
 - and its description is in the first row

```
# A tibble: 1 x 32
        рх
                                                                             trial region region_n region_text eye
                                                                                                                                                                                                                                                                     ff
                                                                                                                                                                                                                                                                                                 fp
                                                                                                                                                                                                                                                                                                                            rpd
                                                                                                                                                                                                                                                                                                                                                        tt
                                                                              <chr> <chr> <chr>
                                                                                                                                                                                   <chr>
                                                                                                                                                                                                                                          <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr< <chr> <chr> <chr> <chr< 
         <chr>
1 participant I~ tria~ sente~ numeric~ text prese~ whic~ firs~ firs~ regr~ tota~
# i 22 more variables: fix_count <chr>, reg_in <chr>, reg_in_count <chr>,
                 reg_out <chr>, reg_out_count <chr>, rt <chr>, bio <chr>, critical <chr>,
#
#
                 gender <chr>, item_id <chr>, list <chr>, match <chr>, condition <chr>,
                name <chr>, lifetime <chr>, tense <chr>, type <chr>, yes_press <chr>,
#
#
                KeyPress <chr>, accept <chr>, accuracy <chr>, px accuracy <chr>
```

- we want to transpose the data
 - i.e., rotates the data so that the column names are in a row, with the descriptions in another row

pivot_longer()

- takes wide data and makes it longer
 - converts headers of columns into values of a new column
 - combines the values of those columns into a new condensed column
- takes a few arguments:
 - cols: which columns do we want to combine into a single column?
 - names_to: what should we call the new column containing the previous column names?
 - values_to: what should we call the new column containing the values from the previous columns?

Pivot our data dictionary

• this looks much better!

```
dict_lifetime <-
  dict_lifetime |>
  pivot_longer(
    cols = everything(),
    names_to = "variable",
    values_to = "description"
)
```

Save data dictionary

• now we can save our data dictionary just like we would any csv

write_csv(dict_lifetime, here("data", "tidy_data_lifetime_pilot_dictionary.csv"))

Formatted tables

- when we render our document, dict_lifetime won't look very pretty
- there are several packages that produce nicely formatted tables
 - knitr

dict_lifetime |> knitr::kable()

variable	description
px	participant ID (factor)
trial	trial number (ordered factor)
region	sentence region (order factor)
0	numerical representation of sentence region (ordered factor)
-	xtext presented in the region (string)
eye	which eye was tracking: right or left (binomial)
ff	first-fixation times in milliseconds (continuous, values can be $0 <$)
fp	first-pass reading times in milliseconds (numeric, values can be $0 <$)
rpd	regression-path duration in milliseconds (numeric, values can be $0 <$)
tt	total reading time in milliseconds (numeric, values can be $0 <$)
fix_count	number of total fixations in the region (count)
reg_in	whether of a regression was made into the regions (binomial: $0 = no, 1 = yes$)
reg_in_c	ountraber of fixations into the region (count)
reg_out	whether of a regression was made out of the regions (binomial: $0 = no, 1 = yes$)
$reg_out_$	countber of fixations out of the region (count)
\mathbf{rt}	reaction time from critical sentence presentation to button press (continuous,
	values can be $0 <)$
bio	lifetime biography context sentence (string)
critical	critical sentence (string)
gender	gender of stimulus subject (binomial: male, female)
item_id	item identification number (critical items: 1-80)
list	experimental list version: base list version (1-4) and whether the yes-button was coded as 4 or 5 (factor: 14, 15, 24, 25, 34, 35, 44, 45)
match	whether the referent-lifetime was congruent with tense
condition	condition: lifetime (dead, alive) + tense (PP, SF) (factor)
name	name of stimulis subject (string)
lifetime	lifetime status of stimulus subject at time of experiment (binomial: dead, alive)
tense	tense used in critical sentence (binomail: $PP = present perfect, SF = simple future)$
type	sentence type (factor with one level: critical)
yes_press	corresponding coding for the yes-button on Cedrus response box $(4 = \text{left button}, 5 = \text{right button})$
KeyPress	key that was pressed (4 = left button, 5 = right button)
accept	whether the item was accepted, i.e., whether KeyPress equalled yes_press
accuracy	whether the acceptance was accurate (reject for a mismatch, accept for a match)
•	apparticipant's overall accuracy score
-	-

Tables as LaTeX code

- you can add the argument "latex" to print LaTeX code for a table in the Console
 - you can then cut and paste this code into a LaTeX (or Overleaf) script

```
dict_lifetime |>
   knitr::kable("latex")
```

• but be careful, if you're rendering to HTML the table won't be printed if you use "latex"

Exercise

- 1. install the knitr package (install.packages("knitr"))
- 2. print dict_lifetime, but only for the following variables:
 - px, trial, region_text, ff, fp, and condition
- 3. use kable() from knitr to print the table

variable	description
px	participant ID (factor)
trial	trial number (ordered factor)
$region_text$	text presented in the region (string)
ff	first-fixation times in milliseconds (continuous, values can be $0 <$)
fp	first-pass reading times in milliseconds (numeric, values can be $0 <$)
condition	condition: lifetime (dead, alive) + tense (PP, SF) (factor)

Data summaries

• we can create summary tables of our data

ci = qt(1 - (0.05 / 2), N - 1) * se, lower.ci = mean.ff - qt(1 - (0.05 / 2), N - 1) * se, upper.ci = mean.ff + qt(1 - (0.05 / 2), N - 1) * se)

- and print the output with the kable() function from the knitr package
 - for extra customisation you can also use the kableExtra package (e.g., with the kable_styling() function)

Table 3: Table with summary statistics for first-fixation duration at the verb region

condition	lifetime	tense	Ν	mean.ff	sd	se	ci	lower.ci	upper.ci
deadPP	dead	PP	140	198.9	57.9	4.9	9.7	189.2	208.6
deadSF	dead	\mathbf{SF}	139	194.6	67.9	5.8	11.4	183.2	205.9
livingPP	living	PP	140	194.2	77.3	6.5	12.9	181.3	207.1
livingSF	living	\mathbf{SF}	140	186.0	57.6	4.9	9.6	176.4	195.6

Saving summary tables

- we could also save this table using write_csv()
 - but it's relatively simple to re-produce, so I wouldn't bother
 - instead, when writing up my results I would load in the data and print the summary directly
- sometimes summary tables are more code-intensive
 - in this case I would save the summary as a csv, and simply load and print it when writing in R markdown or Quarto

Additional packages

There are many other packages for including tables that are publication-ready. Some that I would suggest you look into:

- kableExtra which includes additionally formatting options for knitr::kable() tables via the kable_styling() function and others
- flextable
 - very flexible package for creating publication-ready tables of many formats
- papaja::apa_table(): the papaja package aids in creating APA-formatted journal articles
 - the apa_table() function can take objects containing results from a statistical test/model and output a formatted table
 - we'll discuss this topic more when we get into regression

kableExtra::kable_styling()

- we'll first create a little summary table using the $\verb"iris"$ dataset which comes built-in with R

• and we'll print the summary using kable_styling() (Table 4)

```
sum_iris |>
knitr::kable() |>
kableExtra::kable_styling()
```

Table 4: Exam	nple output o	of an table	using the	kableExtra	package

Species	mean	sd	n
setosa versicolor	$5.006 \\ 5.936$	$\begin{array}{c} 0.3524897 \\ 0.5161711 \end{array}$	50 50
virginica	6.588	0.6358796	50

flextable

• print the same summary using flextable() (Table 5)

```
sum_iris |>
  flextable::flextable()
```

Table 5: Example output of an table using the flextable package

Species	mean	sd	n
setosa	5.006	0.3524897	50
versicolor	5.936	0.5161711	50
virginica	6.588	0.6358796	50

papaja::apa_table()

• now run a linear mixed model on the iris data

• and print a model summary table using apa_table() (Table 6)

lmm_iris |> papaja::apa_print() |>
papaja::apa_table(caption = NULL)

Exercise

- 1. create an object with some summary statistics of the variable rt
 - call it summary_rt
- 2. use kable() from knitr to print a table, it should look something like Table 8
- 3. try creating the same table with one (or more) of the additional packages we saw above (kableExtra, flextable, papaja)

Table 6: Example output of an LMM using papaja package

[tbp]

Table 7

Term	\hat{eta}	95% CI	t
Intercept	0.85	[-0.34, 2.05]	1.39
Sepal Length	0.27	[0.18, 0.36]	5.85
Petal Width	0.51	[0.28, 0.74]	4.37

Table 8: Summary of reaction times (ms) per condition

lifetime	tense	condition	Ν	mean.rt	sd
dead	PP	deadPP	140	3530.5	2915.8
dead	\mathbf{SF}	deadSF	139	1747.0	1153.4
living	PP	livingPP	140	2257.7	1346.3
living	\mathbf{SF}	livingSF	140	2578.1	1958.7