
Writing Reproducible Code
Literate, linear programming

Daniela Palleschi

2024-05-14

Table of contents

Learning objectives 1

Reproducible code 1
Writing linear code . 2
Literate programming . 2
Example R script . 3

Dynamic reports 3
Structure your reports . 4
Session Information . 4
Printing session info . 4

Learning objectives

• learn what literate programming is
• create and render a dynamic report with Quarto
• load data
• include a table and figure

Reproducible code

• how you write your code is the first step in making it reproducible

• the first principle is that your code must be linear

1

– this means code must be written in a linear fashion
– this is because we typically run a script from top-to-bottom

read_csv(here("data", "my_data.csv"))

library(readr)
library(here)

Writing linear code

• you need to load a package before you call a function from it

– if we’re just working in an R session, before means temporally prior
– with linear code, before means higher up in the script

• such pre-requisite code must

a. be present in the script
b. appear above the first line of code that uses a function from this package

• missing pre-requisite code might not throw an error message

– but might produce output we aren’t expecting
– e.g., forgetting to filter out certain observations
– or forgetting that some observations have been filtered out

Literate programming

• introduced in 1992 by Donald Knuth (Knuth, 1984)

• refers to writing and documenting our code so that humans can understand it

– important for us: we are (generally) not professional programmers, nor are our
peers

• we need to not only know what our code is doing when we look back at it in the fu-
ture/share it

• the easiest way: informative comments

– the length and frequency of these comments is your choice

2

Example R script

Analysis script for phoneme paper
author: Joe DiMaggio
date: Feb. 29, 2024
purpose: analyse cleaned dataset

Set-up

load required packages
library(dplyr)
library(readr)
library(ggplot2)
library(lme4)
library(broom.mixed) # tidy model summaries
library(ggeffects) # model predictions
library(here) # project-relative file path

load-in data
df_phon <- read_csv(here("data", "phoneme_tidy_data.csv"))

Explore data

• begins with some meta-information about the document, including its purpose

– aids in knowing which scripts to run in which sequence

• there are three hashtags after some headings (###)

– this is helpful because it structures the outline of the document in RStudio

• the purpose of chunks of code are written above

– description of specific lines of code are also given

Dynamic reports

• R scripts are useful, but don’t show the code output

– and commenting can get clunky

• dynamic reports combine prose, code, and code output

– R markdown (.Rmd file extension) and Quarto (.qmd) are extensions of markdown

3

∗ can embed R code ‘chunks’ in a script, thus producing ‘dynamic’ reports
– produce a variety of output files which contain text, R code chunks, and the code

chunk outputs all in one

Structure your reports

• describe the function/purpose at the beginning

• document your train of thought and findings throughout the script

– e.g., why are you producing this plot, what does it tell you?

• give an overview of the findings/end result at the end

• it’s wise to avoid very long, multi-purpose scripts

– rule of thumb: one script per product or purpose
– e.g., data cleaning, exploration, analysis, publiation figures, etc.

Session Information

• R and R package versions are both open source, and are frequently updated

– you might’ve run your code using dplyr version 1.1.0 or later, which introduced
the .by per-operation grouping argument

– what happens when somebody who has an older version of dplyr tries to run your
code?

∗ They won’t be able to!
– the reverse of this situation is more common:

∗ a newer version of a package no longer supports a deprecated function or argu-
ment

Printing session info

• so, print your session info at the end of every script!

sessionInfo()

4

R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Ventura 13.2.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats graphics grDevices datasets utils methods base

loaded via a namespace (and not attached):
[1] compiler_4.4.0 fastmap_1.2.0 cli_3.6.2 htmltools_0.5.8.1
[5] tools_4.4.0 rstudioapi_0.16.0 yaml_2.3.8 rmarkdown_2.27
[9] knitr_1.47 jsonlite_1.8.8 xfun_0.44 digest_0.6.35

[13] rlang_1.1.4 renv_1.0.7 evaluate_0.23

Knuth, D. (1984). Literate programming. The Computer Journal, 27(2), 97–111.

5

	Learning objectives
	Reproducible code
	Writing linear code
	Literate programming
	Example R script

	Dynamic reports
	Structure your reports
	Session Information
	Printing session info

