
Publishing analyses + Peer code review
Reproducing analyses from a persistant project repository

Daniela Palleschi

Sat Aug 24, 2024

Table of contents

1 Open and FAIR data 2

2 OSF: Open Science Framework 2

3 Our first OSF repo 3
3.1 Private or public . 3
3.2 Contributors . 4
3.3 Adding files . 4
3.4 Adding data . 4
3.5 Adding scripts . 4

3.5.1 Adding output files . 5
3.5.2 Structuring your scripts/ folder . 5

4 Checking reproducibility 5
4.1 Download OSF repo . 6
4.2 Reproduce your analyses . 6

5 Revisiting reproducibility 7
5.1 Improving code reproducibility . 7
5.2 Packages . 8
5.3 README . 8
5.4 OSF repo structure . 8

6 Code review 8
6.1 Sharing your project . 10
6.2 Swapping project URLs . 10

Session Info 11

1

Learning objectives

Today we will…

• set-up our first OSF project
• share necessary files to make our OSF project reproducible
• conduct a code review of our own project
• conduct a peer code review

Resources

• DeBruine (2022) and accompanying slides

1 Open and FAIR data

• recall the FAIR principles we discussed at the beginning of term

– data should be Findable, Accessible, Interoperable, and Reusable
– we’re extending these principles to our analyses as well

• so far, our data and analyses are stored locally on our machines

– we need to share them with persistent public storage
– e.g., GitHub or GitLab, the Open Science Framework (OSF) or Zenodo

2 OSF: Open Science Framework

• we’ll use the OSF (https://osf.io/), which is a user-friendly project management platform

– provides persistant URLs
– user-friendly (drag-and-drop)
– popular for open storage of data, materials, and analyses

• also offers pre-registration and pre-print storage
• can also be connected to Dropbox, Google Drive, GitHub and GitLab

– but this requires you to have your data and analyses stored on these services, the
security of which cannot be guaranteed long-term

• if you don’t already have an OSF account, click the ‘sign up’ button at the top right of
the OSF homepage

2

https://debruine.github.io/code-review/#/title-slide
https://osf.io/
https://osf.io/

Figure 1: Source: National Library of Medicine (all rights reserved)

3 Our first OSF repo

• we’ll start by creating a new OSF project

1. Sign in to the OSF
2. Click on ‘Create new project’

• provide a name such as ‘Open Science Practices: Reproducibility coursework
(SoSe2024)’

• Important: set storage location to Germany - Frankfurt or some other place
relevant for your institution (for legal Data Protection reasons)

• add some concise description

3. Navigate to your project and explore the page and tabs

3.1 Private or public

• you should notice near the top right corner a button ‘Make Public’

– this tells you that your project is currently private
– this means nobody can see it but you (or any collaborators you add)

• typically you would make a repository public when it has been accepted for publication,
or if you publish a pre-print

3

https://www.nlm.nih.gov/oet/ed/cde/tutorial/02-300.html

– you can also make it public before this, but this is something to discuss with your
collaborators

3.2 Contributors

• repository contributors are typically co-authors or collaborators for a project
• click on the ‘Contributors’ tab (top right of the screen)

– click on ‘+ Add’, find my account, and add me as a collaborator with ‘Read’ rights
– make sure the ‘Bibliographic Contributor’ button is checked
– this just means that I will be included as bibliographic author if this repo is ever

cited

• go back to the project page, do you see any changes?

3.3 Adding files

• our purpose for creating an OSF project was to share our data and materials

– to do this, we navigate to the ‘Files’ tab

• rather unfortunately, we can only upload files (i.e., not entire folders)

– this has the benefit of meaning our folder structure must be intentional
– but the drawback that it’s quite tedious if you want to share a large project

• let’s start by adding our data and scripts

– add a folder called data
– and another folder called scripts or code, or whatever you prefer

3.4 Adding data

• under data, add the csv file you presumably have in the same folder in your project
(drag and drop, or select the big green +)

– chromy_et-al_2023_English_final.csv

3.5 Adding scripts

• under the scripts folder add the scripts where we worked with the data

4

3.5.1 Adding output files

• you can also upload output produced by each script (e.g., HTML files)
• outputting PDF files makes this a bit easier, though

– anybody viewing your project doesn’t have to download the Quarto scripts to see
what was done (as .qmd and .html files aren’t viewable in-browser on the OSF)

– this also makes it easier to compare the reproduced analyses to the shared analyses,
because re-rendering the downloaded script will replace the output file locally (but
the OSF version will remain unchanged, of course)

– to do so you’ll need to have an LaTeX distribution on your machine
– or you could install tinytex

3.5.2 Structuring your scripts/ folder

• unlike the data folder, how you organise and name the scripts/ folder on OSF is more
flexible

– because we (likely) aren’t accessing these scripts from somewhere else in the project
(unlike loading data from the data folder)

• you can include them in sub-folders if you prefer

– the structure of this folder is organisational, and not fundamental to reproducibility
– more organised folders make it easier to navigate for someone not familiar with the

project structure
– keeping this structure identical to your actual project structure is also ideal for

on-going larger projects, but it’s up to you

Checklist: Share data and code

At this point, your OSF project should

• be private (this is the default for a new project)
• have me as a collaborator
• contain the folders data/ and scripts/

– which in turn contain the CSV file and your Quarto script(s)
– ideally scripts/ will also contain the output file(s)

4 Checking reproducibility

• a code review refers to when somebody else checks your code

5

https://daniela-palleschi.github.io/SSOL24-reproducibility-workshop/slides/day2/packages/packages.html

– this should also include a check for reproducibility
– as well as validity and good coding practices (not our focus right now)

• why should we do it?

– firstly, everybody makes mistakes! increases the chances they’ll be fixed
– tests reproducibility

• let’s do a quick code review of our own OSF repos, checking to see if we can download
and re-run our own analyses

4.1 Download OSF repo

• let’s start by downloading our OSF repo

– from the project overview page, go to the ‘Files’ pane
– click on ‘OSF Storage (Germany - Frankfurt)’
– Click ‘Download as zip’ button and store somewhere useful/rename as needed

Figure 2: How to download an OSF repo

4.2 Reproduce your analyses

• first, close all R projects you currently have open

6

– this is because RStudio might try to open your downloaded scripts in an already
open RProject, which we don’t want

• now, navigate to the zip you just downloaded and decompress it (double-click)

– select a Quarto script from scripts/
– try to run the script, does it run?
– probably not…let’s discuss why

5 Revisiting reproducibility

• we’ve shared the code, not just the data

– this has been strongly encouraged in the reproducibility research as of late (e.g.,
the title Share the code, not just the data…, Laurinavichyute et al. (2017))

– but is this sufficient to ensure long-term reproducibility?
– Laurinavichyute et al. (2017) (among others) suggest many more steps that should

be taken to improve reproducibility

• our focus is on sharing data and analyses with the aim of reproducibility, not just docu-
menting what was done

– so we have to share what is necessary to make our project reproducible
– e.g., that it can be run with the same environment on another machine?

• so what should we share?

5.1 Improving code reproducibility

• what structural dependecies do our scripts have?

– e.g., filepaths and folder names

• consider, for example, how we accessed the data from our scripts

– did we use setwd()?
– did we use filepaths?
– no, we used the here() package within an R project
– this meant we used our project root directory as our working directory

• so, we should, at minimum, also include the .Rproj file at the project root directory

7

5.2 Packages

• included the .Rproj file won’t mean that the person who downloads it will also have our
packages

– e.g., they might not have the here package, and won’t even be able to use our code
to load in the data

• if you want to learn how to help others restore your exact package library (as long as
they’re using the same version of R), go through the materials for Package Management

– and then this page from another course I gave to see how to share the relevant files

5.3 README

• remember to update your README accordingly!

– this can be updated as you add more to your project

• the project README.md will ideally have information that is useful once the project is
downloaded in its entirety

– e.g., brief info about the project/data
– description of the folder/file structure
– any info required for reproducibility (e.g., you could mention needing the here()

package to read in data)

5.4 OSF repo structure

• your OSF project should look more of less like Figure 3 (with different data file name(s))

– the .Rprofile, renv/ folder, and renv.lock files are not relevant if you didn’t
work through the ‘Project Management’ materials

6 Code review

• we’ll again try to reproduce our own analyses before sharing the OSF project with a peer
• again, close all R projects you currently have open
• now, navigate to the zip you just downloaded

– select a Quarto script from scripts/
– try to run the script, does it run?

8

https://daniela-palleschi.github.io/SSOL24-reproducibility-workshop/slides/day2/packages/packages.html
https://daniela-palleschi.github.io/r4repro_SoSe2024/slides/11-osf/osf.html#packages

Figure 3: Your OSF should now look like this

9

6.1 Sharing your project

• we need to share our project with others
– your project is still private
– so you need to produce a link because the URL won’t work for non-contributors

• produce a View-only link
– you can do this in Settings (top right)
– give an informative name (so you remember why you created this link)

• if you select Anonymize, your name will be removed from the project
– this is useful for e.g., blind peer review
– but will not remove your name from your scripts!

6.2 Swapping project URLs

• go to this link and add your OSF repo URL, making note of your row number
• go to the OSF repo on the row below your own and download the project

– inspect the project metafiles (e.g., README)
– try to reproduce the analyses, can you?

Anonymising your scripts (optional)

If you have a relatively large project with your name at the beginning of multiple scripts,
it can be tedious to manually remove it for double-blind peer review. And you might not
be sure you actually took your name out of everything!
This can be used using RStudio’s Global Find:

• press Cmd+Shift+F
• add your name (or anything else you want anonymised) under Find:
• under Search in:, choose your filepath (for me: the OSF folder only) and hit enter
• then toggle to ‘Replace’ when a tab pops up next to the Terminal
• type in your replacement (e.g., [Anonymized for peer review]), and hit “Re-

place All”

Important: this will work for HTML and R/Quarto/Rmd scripts, but not for PDFs!
so you might want to re-render all PDFs. As far as I can tell you have to re-render
each PDF. If you’re working in a Quarto project (and not an .Rproj), then you can use
quarto render subfoldername --to pdf in the Terminal to re-render only the OSF
PDFs. We didn’t discuss Quarto projects in this course, however.
After the manuscript is accepted, you can then reverse this step: use the Global Find
to replace [Anonymized for peer review] with your name! This is why I suggest

10

https://box.hu-berlin.de/f/f7ba9bdf2ba64325bc8f/
https://posit.co/blog/rstudio-1-3-the-little-things/

surrounding the phrase with [], it ensures you don’t accidentally replace the string
‘anonymized for peer review’ elsewhere in your files (e.g., maybe you wrote in some
analysis plan “all scripts will be anonymized for peer review”, which would then be
changed to “all scripts will be Daniela Palleschi” if I had replaced Anonymized for peer
review with my name).

Learning objectives �

Today we…

• set-up our first OSF projectc �
• shared necessary files to make our OSF project reproducible �
• conducted a code review of our own project �
• conducted a peer code review �

Session Info

print(sessionInfo(), locale = F)

R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Ventura 13.2.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0

attached base packages:
[1] stats graphics grDevices datasets utils methods base

loaded via a namespace (and not attached):
[1] digest_0.6.36 fastmap_1.2.0 xfun_0.47 magrittr_2.0.3
[5] knitr_1.48 htmltools_0.5.8.1 rmarkdown_2.28 cli_3.6.3
[9] renv_1.0.7 compiler_4.4.0 rprojroot_2.0.4 here_1.0.1

[13] rstudioapi_0.16.0 tools_4.4.0 evaluate_0.24.0 Rcpp_1.0.12
[17] yaml_2.3.10 magick_2.8.3 rlang_1.1.4 jsonlite_1.8.8

11

References

DeBruine, L. (2022). Intro to code review. https://debruine.github.io/code-review/
Laurinavichyute, A., Yadav, H., & Vasishth, S. (2017). Share the code, not just the data:

A case study of the reproducibility of JML articles published under the open data policy.
Preprint, 1–77.

Rodrigues, B. (2023). Building reproducible analytical pipelines with R.

12

https://debruine.github.io/code-review/

	Open and FAIR data
	OSF: Open Science Framework
	Our first OSF repo
	Private or public
	Contributors
	Adding files
	Adding data
	Adding scripts
	Adding output files
	Structuring your scripts/ folder

	Checking reproducibility
	Download OSF repo
	Reproduce your analyses

	Revisiting reproducibility
	Improving code reproducibility
	Packages
	README
	OSF repo structure

	Code review
	Sharing your project
	Swapping project URLs

	Session Info

