
Building a reproducible workflow in R
Project-oriented workflow

Daniela Palleschi

Wed Aug 21, 2024

Table of contents

Building a reproducible workflow in R 1
Broadening the reproducibilty spectrum . 2
Project management . 2

Naming conventions . 2
Literate programming . 3
Documentation . 4
Version control (not covered in this workshop) . 4
Persistant (public) storage . 4
Writing (not covered in this workshop) . 5

Setting up a project 5

Learning Objectives

Today we will learn…

• about reproducibility practices beyond sharing code and data
• about project-oriented workflows
• what we will cover in this workshop

Building a reproducible workflow in R

• we now know some important principles of a reproducible workflow

– and that ‘reproducibility’ is not black-and-white

1

– but even the reproducibility spectrum is an oversimplification (Peng, 2011)

• some additional resources that provide a list of tips include:

– Bowers & Voors (2016); Nagler (1995); Wilson et al. (2017); Corker (2022)

Broadening the reproducibilty spectrum

• there are different levels of reproducibility

– the bare minimum is sharing the code and data
– and including session information:

∗ which operating system was used
∗ which software/package versions were used

• going bigger:

– project-oriented workflow
– project-specific filepaths
– contained in a single project folder

• we will be using RProjects to achieve this

Project management

• folder structure
• project-relative file paths
• appropriate documentation

– e.g., README

• it’s great to map out your project structure early on

– but it will grow as you go along
– reproducible principles facilitate adapting as it grows

Naming conventions

• there are some “rules” for naming files and folders

– The Turing Way: Naming files, folders, and other things
– Jenny Bryan: naming things (Reproducible Science Workshop 2015)

1. Avoid special characters

• ensures machine readability

2

https://the-turing-way.netlify.app/project-design/filenaming.html
https://speakerdeck.com/jennybc/how-to-name-files

2. Make names concise but meaningful

• ensures human-readability

3. Avoid spaces

• try CamelCase, snake case (snake_case), or skewer case (skewer-case)
• or use hyphens (-) to separate chunks, and underscores (_) to connect words of the

same chunk

4. Consider default ordering

• e.g., with dates: YYYY-MM-DD
• with folders or files: numerical prefixes (e.g., 01-data_cleaning.R, 02-data_visualisation.R)

5. Be consistent

Literate programming

Instead of imagining that our main task is to instruct a computer what to do, let
us concentrate rather on explaining to human beings what we want a computer to
do.

— Knuth (1984), p. 97

• originally used to refer to writing programs
• but also applies to analysis code

– especially if we’re aiming for reproducibility

• main concepts:

– code is linear (this pre-dates Knuth, 1984)
– informative but concise commenting

• main benefits:

– facilitates maintenance
– helpful for future-you, collaborators, etc.

3

Documentation

• metadata

– project README
– codebook/data dictionary

• README should contain

– a project description
– relevant links
– description of folder structure

• can be updated as the project develops

• README.md files in GitHub/Lab are automatically used as a project description

– .md is a plain text document
– uses markdown syntax

Version control (not covered in this workshop)

• git: local tracking
• useful for the analysis and writing phases

– but can be tricky for collaboration

• GitHub/GitLab: remote tracking

– store your changes to your local git repository
– then push them to your remote repository

• safe guards against local hardware/software issues

– lost or damaged computer or local files

• and allows for collaboration or sharing

Persistant (public) storage

• GitHub/Lab are sub-optimal

– developer-focused
– typically lack thorough documentation/metadata
– not very user-friendly for non-users

• OSF, Zenodo

4

– Open Science-focused
– can be linked to a GitHub/Lab repository
– facilitate thorough documentation
– user-friendly

Writing (not covered in this workshop)

• dynamic reports with Markdown syntax

– e.g., Rmarkdown, Quarto
– integration of data, code, and prose

∗ facilitates cross-referencing within document
∗ integration of citation management tools
∗ supports LaTeX syntax for example sentences and tables

• papaja package for APA-formatted Rmarkdown documents

• challenge: collaboration

– not all collaborators know these tools
– track changes not currently possible

Setting up a project

• tomorrow: hands-on
• required installations/recent versions of:

– R
∗ preferably version 4.4.0, “Puppy Cup”
∗ check current version with R.version
∗ download/update: https://cran.r-project.org/bin/macosx/

– RStudio
∗ preferably version 2023.12.1.402, “Ocean Storm”
∗ Help > Check for updates
∗ new install: https://posit.co/download/rstudio-desktop/

5

https://cran.r-project.org/bin/macosx/
https://posit.co/download/rstudio-desktop/

Learning objectives �

Today we learned…

• about reproducibility practices beyond sharing code and data �
• about project-oriented workflows �
• what we will cover in this workshop �

References

Bowers, J., & Voors, M. (2016). How to improve your relationship with your future self.
Revista de Ciencia Política (Santiago), 36(3), 829–848. https://doi.org/10.4067/S0718-
090X2016000300011

Corker, K. S. (2022). An Open Science Workflow for More Credible, Rigorous Research. In
M. J. Prinstein (Ed.), The Portable Mentor (3rd ed., pp. 197–216). Cambridge University
Press. https://doi.org/10.1017/9781108903264.012

Knuth, D. (1984). Literate programming. The Computer Journal, 27(2), 97–111.
Nagler, J. (1995). Coding Style and Good Computing Practices. PS: Political Science &

Politics, 28(3), 488–492. https://doi.org/10.2307/420315
Peng, R. D. (2011). Reproducible Research in Computational Science. Science, 334(6060),

1226–1227. https://doi.org/10.1126/science.1213847
Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good

enough practices in scientific computing. PLOS Computational Biology, 13(6), e1005510.
https://doi.org/10.1371/journal.pcbi.1005510

6

https://doi.org/10.4067/S0718-090X2016000300011
https://doi.org/10.4067/S0718-090X2016000300011
https://doi.org/10.1017/9781108903264.012
https://doi.org/10.2307/420315
https://doi.org/10.1126/science.1213847
https://doi.org/10.1371/journal.pcbi.1005510

	Building a reproducible workflow in R
	Broadening the reproducibilty spectrum
	Project management
	Naming conventions

	Literate programming
	Documentation
	Version control (not covered in this workshop)
	Persistant (public) storage
	Writing (not covered in this workshop)

	Setting up a project

